

Network Performance Studies in High Performance
Computing Environments

by

Ben Huang

Supervised by Dr. Michael Bauer and Dr. Michael Katchabaw

Graduate Program in Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science

Faculty of Graduate Studies
The University of Western Ontario

London, Ontario, Canada

© Ben Huang 2004

ABSTRACT

With the advances of modern computers and network technologies, High Performance

Computing (HPC) is becoming increasingly accessible in numerous institutions and

organizations. The commodity cluster consisting of general purpose computers is a

popular model and appears to be a trend for future HPC. Good network performance is

crucial for high performance computing in this kind of environment. In this thesis, we

explore network performance characteristics in Linux-based HPC clusters. The behavior

of Gigabit Ethernet, Myrinet and Quadrics’ QsNet are investigated. To do this, we

developed a network benchmark tool – Hpcbench, to measure the UDP, TCP and MPI

communication throughput and latency for these high performance networks, and to trace

system kernel interactions with the network subsystems. We then proceed to show that

system architecture, configuration, workload, drivers of network interface cards, and

other factors can significantly affect the network performance of these cluster

environments.

Keywords: High Performance Computing, cluster computing, network performance

analysis, Linux, UDP, TCP, MPI, Gigabit Ethernet, Myrinet, Quadrics.

 ii

ACKNOWLEDGMENTS

This thesis would not have been finished without the companionship and support of many

people. It is a pleasure that I can express my deepest gratitude and sincerest appreciation

to them.

I would like to thank my supervisors, Dr. Michael Bauer and Dr. Michael Katchabaw. I

have greatly benefited from their advice, generosity and support. I would also like to

thank Baolai Ge, John Morton and Gary Molenkamp for giving me kind assistance with

my work on SHARCNET.

A lot of friends at UWO have made my life much easier and happier during my graduate

studies. Although I can not enumerate their name here, I would like to thank all of them.

 iii

Table of Contents

ABSTRACT……………………………………………………………………………...ii

ACKNOWLEDGMENTS ... iii

Table of Contents ... iv

List of Tables…. ... ix

List of Acronyms... x

Chapter 1 Introduction... 1

1.1 Thesis Statement ... 1
1.2 Thesis Organization .. 2

Chapter 2 Background of High Performance Cluster Computing 4

2.1 HPC History and Its Evolution to Cluster Computing.. 4
2.2 HPC Networking... 7

2.2.1 High Performance Network Technologies... 7
2.2.2 Networking of HPC Clusters ... 9

2.3 Message Passing Interface (MPI).. 11
2.3.1 MPI Introduction.. 11
2.3.2 MPICH... 12

2.4 Job Management System .. 14
2.4.1 Goals of JMS.. 14
2.4.2 LSF (Load Sharing Facility) .. 16

2.5 File Systems in HPC Clusters ... 17
2.5.1 Storage Networking ... 17
2.5.2 Cluster File Systems .. 19
2.5.3 Network Storage in SHARCNET .. 20

2.6 Test-bed Specifications ... 21

Chapter 3 Implementation of Hpcbench... 24

3.1 A Survey of Network Measurement Tools ... 24
3.2 Network Performance Metrics .. 28
3.3 Communication Model.. 31
3.4 Timers and Timing.. 32

 iv

3.5 Iteration Estimation and Communication Synchronization .. 37
3.6 System Resource Tracing.. 40
3.7 UDP Communication Measurement Considerations .. 43
3.8 Summary ... 49

Chapter 4 Investigation of Gigabit Ethernet in HPC Systems 50

4.1 A Closer Look at Gigabit Ethernet.. 50
4.1.1 Protocol Properties... 50
4.1.2 Interrupts Coalescence and Jumbo Frame Size.. 53
4.1.3 Data Buffers and Zero-Copy Technique .. 57

4.2 Network Communication and Kernel Interactions.. 63
4.2.1 Communication on an Alpha SMP Architecture.. 63

4.2.1.1 UDP Communication .. 63
4.2.1.2 TCP Communication... 65
4.2.1.3 MPI Communication ... 66
4.2.1.4 Performance Factors of Network Communication .. 68

4.2.2 Communication on an Intel Xeon SMP Architecture .. 74
4.2.2.1 UDP Communication .. 75
4.2.2.2 TCP Communication... 76
4.2.2.3 MPI Communication ... 77
4.2.2.4 Performance Factors of Network Communication .. 78

4.2.3 Summary and Comparison... 81
4.3 Blocking and Non-blocking Communication ... 81
4.4 UDP and TCP Throughput.. 84

4.4.1 UDP Communication... 85
4.4.2 TCP Communication.. 87

4.5 Network Communication Latency .. 89
4.6 Summary ... 93

Chapter 5 Performance of Myrinet and Quadrics Interconnects 95

5.1 MPI Communication Performance ... 95
5.1.1 Myrinet... 95
5.1.2 Quadrics’ QsNet... 97

5.2 A Comparison to Gigabit Ethernet MPI Communication... 99
5.3 Summary ... 103

Chapter 6 Conclusions and Future Work... 104

 v

6.1 Thesis Summary.. 104
6.2 Contributions and Results ... 105
6.3 Future Work .. 106

References….. 108

Appendix A. Hpcbench Benchmark... 113

A.1 Overview.. 113
A.2 Features .. 114

A.2.1 UDP Communication Test: ... 114
A.2.2 TCP Communication Test:.. 114
A.2.3 MPI communication Test:... 115

A.3 Hpcbench Usage and Options .. 115
A.3.1 UDP Communication Measurement ... 115
A.3.2 TCP Communication Measurement .. 117
A.3.3 MPI Communication Measurement .. 119
A.3.4 SYSMON – Linux System Resource Monitor .. 121

Appendix B. Network Statistics of Clusters ... 123

 vi

List of Figures

Figure 2-1 Trend of Clusters among TOP500 Supercomputers ... 5
Figure 2-2 Structure of High Performance Cluster Computing.. 6
Figure 2-3 Zero-copy Communication ... 9
Figure 2-4 Three Types of Networking for HPC Clusters.. 10
Figure 2-5 Cluster Internet Connection .. 10
Figure 2-6 MPI Role in the System .. 12
Figure 2-7 The Layering Design of MPICH... 13
Figure 2-8 Roles of Job Management System in HPC Clusters 15
Figure 2-9 LSF GUI.. 16
Figure 2-10 Viewing Managed Jobs by LSF .. 17
Figure 2-11 Daemon Interactions in LSF ... 17
Figure 2-12 Local and Shared Storage Architectures ... 18
Figure 2-13 Shared File System in SHARCNET ... 20
Figure 2-14 NFS vs. SAN... 21
Figure 2-15 The SHARCNET Test-bed Network Structure... 22
Figure 3-1 Two-channel Communication Model ... 31
Figure 3-2 Time Scale of Computers with 1GHz CPU (HZ=1000) 34
Figure 3-3 Communication Synchronization.. 39
Figure 3-4 The Pseudo Code of System Resource Tracing for Throughput Tests 42
Figure 3-5 Ideal Pause for UDP Sender.. 47
Figure 4-1 Data Flow in Gigabit Ethernet .. 53
Figure 4-2 Interrupt Coalescence Technique.. 55
Figure 4-3 A Study of Jumbo Ethernet Frames by Alteon [62].. 55
Figure 4-4 Illustration of Linux TCP/IP Implementation ... 58
Figure 4-5 Illustration of Zero-copy Technique in Gigabit Ethernet................................ 62
Figure 4-6 Two Simultaneous UDP Stream into One End Station................................... 72
Figure 4-7 Round Trip Time Distribution .. 89
Figure 4-8 RTT Test over Gigabit Ethernet on an Alpha Cluster..................................... 91
Figure 4-9 RTT Test in Mako... 92
Figure 4-10 Slope Functions of RTT vs. Message Size.. 92
Figure 5-1 MPI Point-to-Point Communication Throughput over Myrinet 96
Figure 5-2 MPI Point-to-Point Communication Round Trip Time over Myrinet 97

 vii

Figure 5-3 MPI Point-to-Point Communication Throughput over QsNet 98
Figure 5-4 MPI Point-to-Point Communication Round Trip Time over QsNet............... 99
Figure 5-5 Multilink Communication over Gigabit Ethernet and Myrinet..................... 101

 viii

List of Tables

Table 2-1 System Information for the SHARCNET Test-bed.. 23
Table 3-1 The Resolution and Overhead of gettimeofday() in Different Architectures ... 35
Table 3-2 The Elapsed Times for usleep() and nanosleep() System Calls 47
Table 4-1 UDP Unidirectional Communication Statistics.. 64
Table 4-2 TCP Unidirectional Communication Statistics in Alpha SMP Systems 65
Table 4-3 TCP Communication with 1 MB Socket Buffer Size 66
Table 4-4 MPI Point-to-Point Communication Statistics in Alpha SMP Systems........... 67
Table 4-5 UDP Unidirectional Communication with 1MB Socket Buffer....................... 69
Table 4-6 Two UDP Stream Test Simultaneously on an Alpha Cluster........................... 73
Table 4-7 Network Protocol Communications with Busy Machines 74
Table 4-8 UDP Unidirectional Communication Statistics in Intel Xeon SMP Systems .. 75
Table 4-9 TCP Unidirectional Communication Statistics in Intel Xeon SMP Systems ... 76
Table 4-10 MPI Point-to-Point Communication Statistics in Intel Xeon SMP Systems.. 77
Table 4-11 UDP Unidirectional Communication with 1MB Socket Buffer..................... 78
Table 4-12 Two UDP Stream Test Simultaneously on the Intel Xeon Cluster 80
Table 4-13 Blocking vs. Non-blocking Communication.. 83
Table 4-14 Intro/Inter-cluster UDP Communication Throughput 85
Table 4-15 Intro/Inter-cluster TCP Communication Performance 88
Table 4-16 RTT Tests between Different Alpha Systems .. 90
Table 5-1 Statistics of MPI Communication over Myrinet and QsNet 100
Table 5-2 Throughput of Multiple Connections on Gigabit Ethernet and Myrinet........ 102

 ix

List of Acronyms
ACK Acknowledgement flag; TCP header

ADI Abstract Device Interface

API Application Program Interface

ATM Asynchronous Transfer Mode

BDP Bandwidth Delay Product

bps Bit per Second

BSD Berkeley Software Distribution

CIFS Common Internet File System

CRC Cyclic Redundancy Check

CSMA/CD Carrier Sense Multiple Access/Collision Detect

DAS Direct-Attached Storage

DF Do not Fragment flag; IP header

DLM Distributed Lock Manager

DMA Direct Memory Access

FC Fibre Channel

FDDI Fiber Distributed Data Interface

FIN Finish flag; TCP header

FLOP Floating Point Operation per Second

GUI Graphical User Interface

HBA Host Bus Adapter

HPC High Performance Computing

HPCC High Performance Cluster Computing

IBA InfiniBand Architecture

ICMP Internet Control Message Protocol

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

KB Kilobyte

Kbps Kilobit per Second

LAN Local Area Network

 x

MAC Medium Access Control

Mbps Megabit per Second

MB Megabyte

MPI Message Passing Interface

MPMP Multi Program Multiple Data

MPP Massively Parallel Processor

MSS Maximum Segment Size

MTU Maximum Transmission Unit

NAS Network-Attached Storage

NFS Network File System

NIC Network Interface Card

OS Operating System

OSI Open Systems Interconnection

PCI Peripheral Component Interconnect

PVM Parallel Virtual Machine

QoS Quality of Service

RFC Request for Comment

RTT Round Trip Time

SAN Storage Area Network

SCI Scalable Coherent Interface

SCSI Small Computers System Interface

SDH Synchronous Digital Hierarchy

SDRAM Synchronous Dynamic Random Access Memory

SMP Symmetric Multi-Processing

SPMD Single Program, Multiple Data

SRAM Static Random Access Memory

SYN Synchronize Sequence Numbers flag; TCP header

TCP Transmission Control Protocol

TTL Time-to-Live

UDP User Datagram Protocol

WAN Wide Area Network

 xi

Chapter 1

Introduction

1.1 Thesis Statement

To solve larger and more complex problems in shorter periods of time is one of the main

purposes of building a high performance computing (HPC) system. Today, HPC systems

act in a crucial role in many fields of research, such as life sciences, aerospace,

atmospheric studies. To achieve higher computing power is one of the main tasks of the

information technology industry.

Back in the 1980s, supercomputers that had much more powerful computing ability than

high-end desktops and workstations were mainly Massively Parallel Processor (MPP)

systems or vector machines. Those extremely expensive machines were only available in

some large organizations or companies.

Things have changed considerably since the 1980s. Modern computers, even personal

computers, are becoming more and more powerful. As well, high-speed, low-latency

network products are becoming increasingly available and less expensive. It is now

possible to build powerful platforms for high performance computation from off-the-shelf

computers and network devices. These “supercomputers” are commonly referred to as

commodity clusters.

One key concept behind most “supercomputers” and high performance computing is the

parallel mechanism: combining the power of many standalone processes that are working

together to solve a complex problem. A lot of parallel architectures have been developed

in the past forty years. However, there is a trend towards using a generic parallel

architecture for HPC systems: a cluster of standalone computers interconnected by a

communication network. This is called High Performance Cluster Computing (HPCC).

This trend is mainly due to the advancement of networking technologies. Consider a

standard 32 bit, 33MHz PCI bus. Its maximum throughput is less than 1 Gigabit/s, which

is the bandwidth of Gigabit Ethernet. If network communication is as fast as system

 1

buses, we clearly can take advantage of this for parallel computing: let a collection of

computers work together through the network, as if they are working off of the same

“motherboard”.

Beowulf systems are the typical example. Beowulf clusters are made up of inexpensive

off the shelf computers connected together with high-speed networking, running a Linux

operating system and open source software. This commodity architecture greatly reduces

the cost of building high performance computing systems, and makes HPC environments

more and more accessible for researchers.

Performance analysis in HPC systems is an incredibly complex problem, however. Many

factors can affect the overall performance of these computing environments. In the past,

supercomputers were systematically tested by vendors before they were delivered to

customers. In the commodity HPC world, most equipment is hooked up at the site, and

the devices of the system may come from different vendors. This raises a problem: are all

these components cooperating well enough? How does the system perform as a whole?

A detailed performance analysis is very important for system designers, administrators,

and application developers to discover potential bottlenecks and other performance

problems and tune both the system and its applications accordingly.

In this thesis, we focus on investigating how well the network system in an HPC

environment functions and identifying the main performance factors in a real HPC

system. To do so, we developed our network benchmark – Hpcbench to evaluate the UDP,

TCP and MPI communication, and analyze the performance of three high performance

interconnects: Gigabit Ethernet, Quadrics’ QsNet and Myrinet in our testbed

SHARCNET [22], a leading distributed high performance computing network across

southern Ontario in Canada. A new tool was required as existing benchmarking tools

available are not suitable for this task, and lack features required for experiments in

today’s HPC environments.

1.2 Thesis Organization

The thesis is organized as follows: Chapter 2 introduces background material on high

performance cluster computing environments. Chapter 3 discusses the design and

 2

implementation of Hpcbench, a comprehensive network benchmark for HPCC systems.

Chapter 4 investigates the performance of Gigabit Ethernet and Chapter 5 briefly

examines other two high performance interconnects – Myrinet and QsNet. Chapter 6

concludes and gives suggestions for future work.

 3

Chapter 2

Background of High Performance Cluster Computing

In this chapter, we provide some background on High Performance Cluster Computing

environments. The systems in our test-bed will be also discussed.

2.1 HPC History and Its Evolution to Cluster Computing

A key reason we use computers is to speed up our work. Researchers always desire more

powerful computers to solve larger and more complex problems. To achieve more

computational power, parallel computing that distributes workload among processors has

been well studied since the 1960s. From the 1960s to the 1990s, most parallel machines,

often called supercomputers, were mainly vector computers and Massively Parallel

Processing (MPP) systems. They were extremely expensive and only available in a very

few organizations.

Information technology changes rapidly. The term “supercomputing” is used less

frequently, and the more general term “High Performance Computing (HPC)” is used

more widely since the 1990s. The term “HPC” refers to a variety of machine types whose

computational ability is more powerful (at least two orders of magnitude in computing

power) than current high-end personal computers and workstations. Today, “HPC”

connotes computing ability in the Teraflops computational range [23].

To improve a computer’s performance, an obvious way is to increase the operating speed

of the processors, system buses, memory, and other components. As we have seen, the

maximum CPU speed could approximately double every 18 months. This exponential

improvement is one of the main forces of high performance computing. Although the

phenomena might continue for a relatively long time, future improvements are

constrained by the speed of light.

Another way to improve performance is to make multiple processors work together and

combine their computational power. This approach is known as parallel computing or

parallel processing. In the past forty years, numerous parallel architectures have been

 4

proposed, most of which systems incompatible with one another. These parallel machines

required careful construction, and ran specialized operating systems and software tools.

Consequently, these machines tended to be costly to construct and maintain.

From the mid-1990s, with the advancement of networking technologies, cluster

computing has become more and more prevalent. A cluster computing system is built

with a number of stand-alone computers interconnected by high performance networks.

The computers in a cluster can be general purpose, off-the-shelf personal computers,

workstations, or small symmetric multi-processor (SMP) systems. The network system to

connect these computers needs to provide high-speed, low-latency communication. This

communication could be Fast Ethernet, FDDI, ATM, SCI (Scalable Coherent Interface),

Gigabit Ethernet, or some other proprietary technology, such as Quadics Network [19]

and Myrinet [21].

As cluster computing and related technologies become mature, more and more High

Performance Computing systems have been built using this paradigm. In looking at the

trend of TOP 500 supercomputers we can see this evolution, as shown in Figure 2-1.

T h e tren d o f c lu s te rs a m o n g T O P 5 0 0
(h ttp : / /w w w .to p 5 0 0 .o rg)

0

50

1 00

1 50

2 00

2 50

3 00

No v-9
6

Jun -9
7

No v -9
7

Jun -9
8

No v -9
8

Jun -9
9

No v -9
9

Jun -0
0

No v-0
0

Jun-0
1

No v -0
1

Jun -0
2

No v -0
2

Jun -0
3

No v-0
3

Jun -0
4

N
u

m
b

er
 o

f
c

lu
s

Figure 2-1 Trend of Clusters among TOP500 Supercomputers

Figure 2-1 lists the architecture statistics of the top 500 supercomputers in the world

surveyed by top500.org [14]. Impressively, we noticed there were 6 clusters on the top 10

list in the latest survey in June 2004. This statistics show the change in the field of HPC:

toward clusters.

 5

The advantages of high performance cluster computing can be summarized as follows:

• Cost effective: Clusters can be built with commodity devices and run commodity

software.

• Flexible: Just about any PC, workstation, or SMP can be clustered into the system.

• Extensible: More nodes can be added into the system when more computational

power is needed without great difficulty.

• Easy to be managed: It is easier to monitor and control the system by using common,

off-the-shelf monitoring tools rather than specialized, proprietary monitoring tools.

Moreover, a single node’s failure will not affect the whole system and it is possible to

repair the failed node without interrupting the rest of system.

• Easy to be integrated: It is easier to merge a cluster into a global distributed Grid

computing environment by using the standardized OGSI interface [24].

Figure 2-2 shows the basic structure of a High Performance Computing Cluster. In cluster

systems, basically all nodes are standalone computers with an operating system installed

on the local file system. Additional libraries, such as the implementation of MPI for

example, may be necessary to support parallel computing in the cluster.

Compute
Node 2

Compute
Node 3

High-speed , low-latency
interconect

Compute
Node 1

Compute
Node 4

Compute
Node N

Figure 2-2 Structure of High Performance Cluster Computing

Currently the operating systems in the HPC world are dominated by Unix-based systems.

(TOP500 list does not specifically identify the operating systems). According to the 2004

International Supercomputer Conference [24], the operating systems of the TOP500

systems (2004 June version) break down to around 55 percent Linux, 40 percent of other

Unix systems, and less than 5 percent with a Windows platform. Meanwhile, more than

 6

half of the systems (287) in the TOP500 use Intel processors, as compared to only 119 a

year ago. This phenomenon is matching the trend of commodity cluster computing. Like

the success of WinTel (Windows+Intel) systems in PC market, LinTel (Linux+Intel)

computers are playing an important role in the HPC world. People appear to prefer a

solution that is less costly and more compatible, while having the same performance.

Linux-based clusters with commodity software and hardware are often referred to as

Beowulf systems. Since Linux is open source and is becoming more and more stable and

powerful, it is expected to be the dominating operating system in HPC clusters in the

future. Even industry giants are zealously providing complete Linux solutions for HPC

systems, putting their own operating systems aside. For example, IBM has 226

supercomputer systems on the TOP 500 list (June 2004), 149 of which were Linux

clusters [14]. All systems in our experimental test-bed environment use Linux, most of

the discussions in this thesis are also based on Linux.

2.2 HPC Networking

2.2.1 High Performance Network Technologies

The interconnection network is a key component for High Performance Computing

Clusters. Traditional FDDI, token ring, Ethernet, and Fast Ethernet may not satisfy HPC

requirements for high-speed and low-latency communication between compute nodes.

In the past ten years, many advanced network technologies have been developed and used

in HPC systems. Three high performance networks that are used in SHARCNET are

typical examples: Gigabit Ethernet, QsNet, and Myrinet.

• Gigabit Ethernet: Ethernet is the world's most pervasive networking technology based

on CSMA/CD protocols. Gigabit Ethernet (1000Mbit/s) has evolved to achieve

higher bandwidth and lower latency while keeping the original protocol semantics as

traditional Ethernets. The standards of Gigabit Ethernet (802.3z for UTP, and 802.3ab

for Optic Fibre connection) were developed by the Gigabit Ethernet Alliance [15] in

1996 and the first commercial products came to market in 1997. Now, Gigabit

Ethernets have become the most popular and cost-effective solution for users with

desires for high performance networks. The latest 10 Gigabit Ethernet was

 7

standardized in 2002 (802.3ae) [15], with commercial products appearing in 2003.

Gigabit Ethernet’s familiarity, easy installation, and maintenance features make this

technology very competitive in cluster computing now and in the future. However,

Ethernet’s overhead can result in a relatively long latency during communication,

which may degrade the performance of some parallel applications. The maximum

throughput of Gigabit Ethernet in practice can exceed 900 Mbps, while the Round

Trip Times of UDP and TCP protocols in Gigabit Ethernets are usually greater than

50 µsec (refer to Chapter 4 for more detail). There were 163 clusters using Gigabit

Ethernet for message passing on the list of TOP 500 supercomputers (June 2004).

• Quadrics Network (QsNet) [19]: QsNet is a high bandwidth, low latency interconnect

for high performance clustering systems. QsNet integrates individual nodes’ address

spaces into a single, global, virtual-address space. QsNet can detect faults and

automatically re-transmit packets during communication. QsNet includes two main

parts: Quadircs’s network interface adaptor (Elan), and a QsNet switch (Elite) that is

constructed with a fat-tree topology. Most clusters in SHARCNET were built with a

Quadrics interconnect, in addition to Gigabit Ethernet. The one-way achievable

throughput in QsNets can reach 1500Mbps while the network latency in QsNets can

be lower than 10 µsec (refer to Chapter 5 for more information).

• Myrinet [21]: Myricom’s Myrinet is one of the most widely used high-performance

interconnects for scalable systems. In June-2004 TOP500 supercomputers list, there

were 186 (37.2%) systems using Myrinet technology. The point to point links by

Myrinet switches can achieve around a 4 Gbps (bidirectional) data rate and as low as

7 µs one-way latency (refer to Chapter 5 for more detail). A low-latency protocol

called GM is the preferred software for Myrinet, and MPICH-GM is the MPICH

binding of GM. An efficient version of TCP/IP over GM is also available. This

network technology is deployed in some parts of SHARCNET as well.

The proprietary QsNet and Myrinet technologies have a better performance than Gigabit

Ethernet in many respects. One key technology of Quadrics and Myrinet to improve

performance is the Zero-copy technique [20]. Using this approach, an application’s

network subsystem directly accesses network packets by going through the network

 8

interface’s driver using a virtual-to-virtual memory mapping. The goal is to eliminate

expensive system calls and other overhead; consequently this method is also referred to

as OS-bypass communication. This is illustrated in Figure 2-3.

In our experimental test-bed environment, the network interface cards (NICs) of these

three network systems were PCI-based. One cluster in our test-bed (mako) deployed

PCI-X NICs. The theoretical maximum data rate of the PCI-X bus (64bit/133MHz) is

about 8.5 Gbps (PCI-X version 1) [17]. To meet higher I/O needs for network systems, a

new InfiniBand Architecture (IBA) [16] was developed and released by a group of

leading IT corporations in 2000. This approach defines a new standard for computer I/O

and inter-computer communication whose bandwidth is not restricted to system’s shared

buses. InfiniBand is being adopted by many IT vendors as the next generation

networking connectivity infrastructure.

 Application

Socket

TCP
IP

Data Link

NIC embedded firmware

Device driver

User space

Kernel space

Device space

Regular network system call
Zero -copy technology

Figure 2-3 Zero-copy Communication

2.2.2 Networking of HPC Clusters

Generally, all compute nodes inside a cluster are controlled by a “Master node” that is

responsible for dispatching jobs and managing the whole cluster. The master node

usually does not participate in the actual computation work, but assumes more of a

coordination role. There are three main kinds of data flow in a cluster: message passing

between compute nodes for parallel applications, data traffic between compute nodes and

shared storage, and management traffic. All traffic can be conducted through one network

system, or can be separated into different network systems. This is shown in Figure 2-4.

 9

Interconnect
(all in one)

Compute
Node1

Compute
Node2

Compute
Node N

Master
Node

High-speed
Interconnect

(message passing)

Master
Node

Storage/managment
Network

Storage1 Storage2

Storage 1 Storage 2

Compute
Node N

Compute
Node 1

Compute
Node 2

High-speed
Interconnect

(message passing)

Master
Node

Storage
Network

Storage 1 Storage 2

Compute
Node N

Compute
Node 1

Compute
Node 2

Management
Network

Figure 2-4 Three Types of Networking for HPC Clusters

Using two interconnects to separate message passing from other traffic (the centre

diagram in Figure 2-4) is the most common model for HPC clusters (including

SHARCNET). Gigabit or Fast Ethernets are widely used for data access and system

management because of its compatibility with traditional TCP/IP protocols and tool

supports. In such a configuration, private IP addresses are used inside the clusters to

avoid IP conflicts with the global Internet. As well, class B private address spaces

(172.16-31.x.x and 192.168.x.x in SHARCNET’s case) are often used in cluster systems,

as the class A private address space is often already used in the organization’s Intranet.

A cluster usually has some kind of link to the Internet, where users are able to login and

submit their jobs. As showed in Figure 2-5, a submission server is accessible from the

Internet and is responsible for sending the jobs to the master node.

` `

In ternet

C luster
(loca l)

M anagem ent LAN

Subm ission
Server

Sw itch /Router

C luster
(rem ote)

M aster
N ode

Firew allShared
storage

Figure 2-5 Cluster Internet Connection

 10

In our test-bed, the master nodes in all clusters also act as the gateway to the Internet. For

example, in the greatwhite cluster, the master node (greatwhite.sharcnet.ca) has three

network interface cards: Elan for a Quadrics interconnect, eth0 (192.168.3.1) for a

Gigabit Ethernet interconnect, and eth1 (129.100.171.40) connected to the campus

Internet. Because the master node is connected to the broader Internet, the master node is

vulnerable to attack or misuse by users. All jobs running in compute nodes will be

stopped if the master node crashes.

2.3 Message Passing Interface (MPI)

2.3.1 MPI Introduction

Parallel computation typically divides a job into many subtasks, with each subtask

handled by separate processes. A communication protocol between cooperating processes

is necessary to support this parallel computing. Message Passing Interface (MPI) is a

vendor-independent library specification defined by MPI forum [13], and is frequently

used as the means for separate processes to communicate during a parallel computation.

The first version of MPI (MPI-1) was developed during 1993-1994 by a group of

researchers from industry, government, and academia. Their two main goals were to

provide source code portability and allow efficient implementation for parallel

programming. The second MPI standard (MPI-2) that was completed in 1998 includes a

set of extensions of MPI-1. When we discuss MPI in this thesis, we will, generally, not

distinguish between the two versions.

The MPI specification defines a model of message passing in a parallel computing

environment and defines a library interface for programmers. It does not specify a

particular implementation or require a particular programming language. Figure 2-6

shows the MPI role in a system. MPI is now the de facto standard for parallel

computation based on message passing model, and implementations of MPI exist for

most parallel computing environments. One reason for MPI’s success is its portability.

Parallel programs containing MPI subroutine and function calls can work on any machine

on which the MPI library is installed with little or no modification necessary.

 11

Most implementations of MPI are based on MPI-1 with C and Fortran bindings.

Currently, the most two widely used MPI implementations are MPICH and LAM/MPI.

Although MPI-1 defines 125 functions, most of them are rarely used by common users. A

simple parallel program can operate using 6 MPI function calls: MPI_Init(),

MPI_Com_rank(), MPI_Com_size(), MPI_Send(), MPI_Recv(), and MPI_Finalize().

Parallel Application

MPI

Linux

TCP/IP

Ethernet

PVM/Sheme...

Solaris/AIX...

Proprietary...

QsNet/Myrinet...

Operating System

Middleware

Network Portocol

Interconnect

Figure 2-6 MPI Role in the System

2.3.2 MPICH

MPICH (stemmed from MPI-Chameleon) is a freely available MPI implementation

developed by Argonne National Laboratory and Mississippi State University [12].

MPICH is the default MPI implementation in all clusters of SHARCNET. MPICH has

played an important role in the development of MPI. It is also the “parent” of many other

commercial or vendor implementations of MPI, such as Myrinet’s MPICH-GM. MPICH

was developed concurrently with the development of MPI, and during the standardization

process since the developers of MPICH were participating in the MPI definition at the

time. The first version of MPICH was released at approximately the same time as the

original MPI 1.0 specification was released.

MPICH can run on a wide variety of systems and its portability of MPICH comes from

its efficient two-layer design. Most MPICH code is device independent and is

implemented on top of an Abstract Device Interface (ADI) which hides most hardware-

dependent details. This enables it to be easily ported to new architectures. The ADI layer

 12

defines a number of “devices”; each MPICH device defines a new implementation, while

most MPI syntax and semantics have been implemented on the top layer (see Figure 2-7).

MPI Collective

MPI Point to Point

Abstract Device Interface (ADT)

Chameleon
Interface QsNet Myrinet

(MPICH-GM)

P4

TCP

Devices

MPI Application

Figure 2-7 The Layering Design of MPICH

An important note about MPICH is that it can be installed on top of TCP/IP

communication stacks by default and run without root privilege in a cluster of computers.

The following 10-line code is the MPI version of HelloWorld.

$ cat HelloWorld.c
/********** HelloWorld.c **********/

#include <stdio.h>
#include “mpi.h”

int main(int argc, char * argv[])
{
 int size, rank;
 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 printf(“Hello world! Process ID: %d Total process: %d \n”, rank, size);
 MPI_Finalize();
 return 0;
}
$ mpicc HelloWorld.c –o HelloWorld
$ mpirun -np 4 HelloWorld
Hello world! Process ID: 0 Total process: 4
Hello world! Process ID: 2 Total process: 4
Hello world! Process ID: 1 Total process: 4
Hello world! Process ID: 3 Total process: 4
$

The script mpicc is used to compile (using gcc by default) and link the MPI program. The

executable is started by another script mpirun (MPI-1). In our example, we ask for 4

processes to run the program. The startup script mpirun will first setup the execution

environment and check whether the defined resources are sufficient to run the program.

For MPICH, the machine file (-machinefile option) and the process group file (-p4pg

 13

option) define what machines and processes will be used to launch a parallel job. If both

of them are not defined, mpirun will examine $MPIHOME/util/machines/mahince.xxxx to

determine the available machines and processes, where xxxx is the architecture of the

system such as LINUX. If condition matches, mpirun will try to communicate with those

machines by rsh or ssh utilities, depending on the configuration of MPICH during the

installation. If communication to all nodes is successful, remote execution of the program

(HelloWorld) with tailored environment and argument settings occurs at each node. At

this point, the same executable program (HelloWorld) will be running on all participating

processes (nodes), and each process can communicate with each other using MPI

libraries on each machine. In our example, the four processes simply printed out their

process information.

The above example illustrates the Single Program, Multiple Data (SPMD) model: the

same program runs on all participated nodes (processes). In SPMD model, each process

typically accesses different data. In most cases, SPMP is the default MPI working type,

although we could convert some SPMP to a Multi Program, Multiple Data (MPMD)

model of computation using MPI.

2.4 Job Management System

2.4.1 Goals of JMS

There are often hundreds or thousands jobs submitted by many users in HPC systems.

Controlling these jobs can be quite a challenge. The startup script mpirun that comes with

all MPI implementations is unable to actually schedule the jobs, and is unable to monitor

the workload in the system for optimized job dispatching. It can only send user jobs to

the nodes from the predefined machine files. This may result in unreasonable usage of

system resources; some nodes in the cluster may be extremely busy, while the others may

be relatively idle. In practice, using mpirun to submit a complex job involving many

processes is uncommon and even forbidden in many HPC clusters.

A job management system is also referred to as a workload management system. Its goal

is to optimize the computing resources to let submitted jobs run and ultimately complete.

 14

Jobs

Job Scheduler

Job Queuing

Resource Manager

Utilities

Node 1 Node 2 Node 3 Node NNode N-1

User space

JMS

Devices

Log

Figure 2-8 Roles of Job Management System in HPC Clusters

There are several elements involved in job management systems, including job queuing,

job scheduling, job dispatching, resource and workload monitoring, resource and

workload management, accounting, and so on. We abstract these elements into three parts,

according their functionalities:

• Job queuing: When a job is submitted, a description of the task to be executed, along

with arguments and a set of resource requirements for the execution are put into a

container of the Job Management System (JMS). The JMS will return a job ID to the

user immediately, and queue the job to await scheduling.

• Job scheduler (workload manager): The job scheduler attempts to choose the best-fit

job to run from the job queue based on defined policies and available resources. A

scheduler tells the resource manager what to do, as well as when and where to run

jobs. “Best-fit” means that the scheduling is not necessarily first-comes first-served.

The job scheduler is a key component of the JMS. Many factors have to be taken into

account to make a decision about which job to schedule and where, such as

application type, user privileges, usage policies, availability of cluster resources, and

so on. The JMS should balance policy enforcement with resource optimization.

• Resource manager (monitoring and management): It manages the job queue and

manages the compute nodes. The resource manager collects system resource

information from each node in the cluster for the job scheduler. It also handles the

 15

startup and cleanup of jobs in each node, and logs the necessary messages.

A number of job management systems have been developed in the past decade. Popular

job management systems include Condor [25], LSF (Load Sharing Facility) [26], Moab

[27] and PBS (Portable Batch System) [28].

2.4.2 LSF (Load Sharing Facility)

LSF is a sophisticated job management system with more than a ten-year history. It is the

default JMS system in SHARCNET. Some of LSF’s key features include support for job

migration, system/user level check pointing, inter-cluster launching, and so on. LSF also

provides a graphical user interface (GUI) for both the user and the administrator to use.

Figure 2-9 depicts a snapshot of the LSF GUI.

Figure 2-9 LSF GUI

In most cases, users submit their jobs by command line on a login terminal. LSF includes

utilities for job submission, job modification, and job querying. Figure 2-10 shows the

job statistics in the cluster of deeppurple. We can see there were more than 100 jobs

submitted to the cluster, and most of them were pending in the job queue. Notice that all

compute nodes (dp2-dp12) were extremely busy with 100% CPU usage, showing the

resource intensive jobs running in the cluster. Figure 2-11 shows the interaction of LSF

daemons and how a job is handled by LSF.

 16

Figure 2-10 Viewing Managed Jobs by LSF

 $ bsub - n 10 prog

1

Master node

Submission host

User

mbatchd

mbschd
sbatchd

pim res

Master lim

mbatchd (Master batch daemon)

mbschd (Master scheduler daemon)

res (Remote execution server)

sbatchd (Slave batch daemon)

lim (Load information manager)

pim (Process information manager)

Job queuing

Job scheduling

Job execution

Resource monitoring

sbatchd

pim

res

lim

Slave (execution) nodes

task

task

Job
Queue 2

3
3

4

4

5

6

5

Figure 2-11 Daemon Interactions in LSF

2.5 File Systems in HPC Clusters

2.5.1 Storage Networking

There are three categories of storage architectures used in HPC cluster systems,

depending on how the storage is connected: direct-attached storage (DAS), network-

attached storage (NAS), and storage area networks (SAN) (see Figure 2-12).

 17

Disk Array 2Disk Array 1 Disk Array 2Disk Array 1 Disk Array 2Disk Array 1

SAN

LAN

DAS NAS SAN

File Server

Figure 2-12 Local and Shared Storage Architectures

A DAS storage device is directly attached to a host system, and can only be used by the

connected host. It is, in essence, a local file system. Both NAS and SAN architectures

provide some form of shared storage. They are called shared file systems or distributed

file systems. In HPC clusters, a distributed file system can be necessary since each inner

(compute) node has to run the same executables and work with the data assigned by the

master node.

A NAS device is a file server that typically uses NFS (Network File System) or CIFS

(Common Internet File System) protocols to transport files over the local area network

(LAN) to clients. In the NAS model, the internal physical disk drives, connected by IDE,

ATA or SCSI interfaces [41], are transparent to the user.

A SAN is a special type of network that connects computers and storage. It changes the

relationship between hosts and storage resources. Hosts and storage are joined together

through a peer-to-peer network. Each host in the SAN system essentially has a Host Bus

Adapter (HBA) that links to the SAN storage. All I/O requests are done solely between

the hosts and the storage. The communication protocols for SAN can be Fibre Channel

(FC), iSCSI, FC over TCP/IP (FCIP) and Internet Fibre Channel Protocol (iFCP). Storage

resources can be arbitrarily assigned to any hosts; for example, we can subnet (group)

several SAN file systems over one physical Fibre Channel connection.

In essence, a SAN is a communication architecture between hosts and storage in the

network. The real systems are not restricted to SCSI over Fibre Channel or SCSI over

 18

Ethernet. For example, a peer-to-peer access model using native block-level

communication instead of file-level can be considered as a SAN system. We may have

ATA-SAN or IDE-SAN in the future. SAN storage is well supported in the InfiniBand

architecture mentioned earlier.

2.5.2 Cluster File Systems

There are many implementations of distributed file systems that are based on the NAS or

SAN models, or some hybrid of the two of them. Some are designed for LANs, such as

NFS and CIFS; some are dedicated to the Wide Area Network (WAN), such as Coda [42]

and AFS [43]; and some focus on parallel I/O like PVFS (Parallel Virtual File System)

[32], where the data are striped (usually 64KB) across multiple file servers to balance the

data load in the network. Many of these distributed file systems are able to efficiently

serve hundreds or even thousands of nodes in a cluster, and are typically referred to as

cluster file systems.

Data inconsistency is one of the most challenging tasks in the implementation of cluster

file systems. In a cluster, each node will load the file allocation table of the mounted

(shared) disks into its own memory. The allocation table can be modified by each node

while the other nodes are not aware of the changes made. It will be very costly if all

nodes are simply informed to update the table whenever there is a modification. In

addition, each node will cache some data received from networked storage. If

applications want to use this data later on, the system will provide the data from its cache

to applications without retrieving this data again from the network, even though this data

might have be modified by other nodes.

To avoid these problems, a synchronization mechanism should be implemented in cluster

file systems, such as the distributed lock manager (DLM) [29]. All computers in a cluster

will notify each other of their activities regarding modifications to shared files, using a

fairly sophisticated means. The interconnection can be Ethernet, Fibre Channel or

proprietary technologies such as Myrinet and Quadrics Network. Some solutions have a

metadata layout. A metadata server manages the all file and directory information while

the real data are stored in separate networking storage.

 19

Due to many advantages of the SAN approach, most cluster file systems can support or

are based on a SAN architecture. Among these are Redhat’s GFS (Global Files System)

[31], IBM’s GPFS (General Parallel File System) [32], Cluster File System’s Lustre [33],

Polyserve’s Matrix Server [34], and Dataplow’s SFS (SAN File System) [35].

2.5.3 Network Storage in SHARCNET

Clustered file systems offer significant performance advantages. Native SAN systems are

fast and efficient, but also costly. Currently, most shared file systems in SHARCNET are

based on NFS systems over Gigabit Ethernet, as showed in Figure 2-13.

SAN Storage

SYST RPS

STRT DUPLXSPEEDUTIL

MODE

Catalyst 2950SERIES3

4

5

6

7

8

9

10

11

12

1

1

2

2

Fibre Channel
Switch

NFS
Server1

NFS
Server2

Disk Array

Gigabit Ethernet

Node1
Node2

Node N

Figure 2-13 Shared File System in SHARCNET

The dedicated file server shares storage using the NFS protocol. This storage can be a

disk array or SAN storage. To balance the data load, there may be multiple NFS servers

used in some clusters. A SAN can be connected to the NFS servers through a variety of

communication networks; Figure 2-13 illustrates a Fibre Channel connection. With this

configuration, the management of file systems is fairly easy, and the SAN environment is

transparent to all client nodes. This type of configuration, however, implies that it may

not be possible to take advantages of all the features of a SAN.

NFS is based on TCP/IP communication and uses a stateless client/server architecture.

This raises several performance problems. Firstly, all data has to be fetched from the

 20

storage via the server for every I/O request. NFS does have a client cache mechanism

based on access patterns, which can provide a significant improvement for some I/O

operations. However, it may fail in most cases in HPC environments, since many

scientific parallel applications run in HPC systems do not access data of files in a

sequential order (recall the SPMD parallel model for cluster computing). Secondly,

transferring data over NFS with a TCP/IP protocol incurs extra protocol and CPU

overheads. Thirdly, locking files may be a serious problem when a cluster has many

nodes. To ensure consistent data, NFS applies this locking mechanism. However, when

many clients are trying to read/write the same file, a race condition may occur and overall

application performance may dramatically decrease. In HPC systems, all nodes are

working in parallel, and some applications that need to work closely with storage may

encounter a serious problem due to locking. Figure 2-14 shows the differences between

file access in NFS and a SAN.

Host NFS server

IP network

Application
read abc.txt

Kernel checks it is not
a local file. Pass job to

NFS client demon

 TCP/IP
read abc.txt in xxx directory

return the abc.txt抯 file descriptor

 data Buffer data and send
to appclication

read first xxxx Bytes of the descriptor

Host
SAN storage

SAN

Application
read abc.txt

Local volume
manager checks the

file descriptor

FC/iSCSI...
read inode block of abc.txt

data
Send data to
appclication

Figure 2-14 NFS vs. SAN

2.6 Test-bed Specifications

SHARCNET, the Shared Hierarchical Academic Research Computing Network, is a

multi-institutional HPC distributed network across 9 universities in southern Ontario. We

will examine four clusters in SHARCNET: greatwhite (UWO), deeppurple (UWO),

 21

hammerhead (Guelph) and mako (Guelph). Figure 2-15 shows the network structure of

our test-bed and Table 2-1 lists the detailed system information of these four clusters.

ORION
Fiber Optic Network

1G
gw1

gw39

hh28

hh1

Gigabit
Ethernet

Gigabit
Ethernet

Gigabit
Ethernet

Master node

dp12
Quadrics

Interconnect

Quadrics
Interconnect

mk8

mk1

Myrinet
Interconnect

Passport
8600

Passport
8600

 Passport
 8600

ProCurve
 2800

1G

Gigabit
Ethernet

Optera
LH1600

1G

1G

Optera
LH1600

Optera
Metro 5200

Optera
Metro 5200

6G 6G
6G

1G

150 KM

1.5 KM

Master node

Master nodeMaster node

Quadrics
Interconnect

dp1

greatwhite
SHARCNET@UWO
IP: 192.168.3.1-39

deeppurple
SHARCNET@UWO
IP: 192.168.2.1-12

hammerhead
SHARCNET@Guelph

IP: 192.168.4.1-28

mako
SHARCNET@Guelph

IP: 192.168.4.31-38

Figure 2-15 The SHARCNET Test-bed Network Structure

 22

Greatwhite

Master-node: gw1 (greatwhite.sharcnet.ca), Compute-note: gw2-gw39
Architecture Compaq ES40 (gw1-gw37) Alpha and ES45(gw38-gw39) Alpha
OS Linux 2.4.21-3.7qsnet #9 SMP

CPU

gw1:4x500MHz
gw2-gw37:4x833MHz
gw38-gw39:4x1GHz

Memory gw1-gw37:4G RAM
gw38-gw39:32G RAM

Interconnect Eth0: Alteon AceNIC Gigabit Ethernet 64bits/33MHz PCI
Elan0: Quadrics QSW Elan3 PCI Network Adaptor

Deeppurple
Master-node: dp1 (deeppurple.sharcnet.ca), Compute-note: dp2-dp12

Architecture Compaq ES40 Alpha
OS Linux 2.4.21-3.7qsnet #9 SMP
CPU dp1:4x500MHz

dp2-dp12:4x666MHz
Memory 4G RAM

Interconnect Eth0: Alteon AceNIC Gigabit Ethernet 64bits/33MHz PCI
Elan0: Quadrics QSW Elan3 PCI Network Adaptor

Hammerhead
Master-node: hh1(hammerhead.sharcnet.ca), Compute-node: hh2-hh28

Architecture Compaq ES40 Alpha
OS Linux 2.4.21-3.7qsnet #9 SMP

CPU hh1:4x500MHz
hh2-hh28:4x833MHz

Memory 4G RAM

Interconnect Eth0: Alteon AceNIC Gigabit Ethernet 64bits/33MHz PCI
Elan0: Quadrics QSW Elan3 PCI Network Adaptor

Mako
Master-node:mk1(make.sharcnet.ca), Compute-node: mk2-mk8

Architecture HP DL360 Intel Xeon
OS Linux 2.4.20-8smp #1 SMP
CPU 4x3GHz Hyperthreading
Memory 2G RAM

Interconnect

Eth0: Broadcom Tigon 3 Gigabit Ethernet PCI-X 64bits/100MHz
Myri0: Myricom PCI Network Adaptor

Table 2-1 System Information for the SHARCNET Test-bed

 23

Chapter 3

Implementation of Hpcbench

In this chapter, we first survey a number of different network benchmark techniques and

tools, and then introduce our benchmarking tool: Hpcbench.

3.1 A Survey of Network Measurement Tools

To measure network attributes such as throughput and latency on an end-to-end basis,

two types of measurement, active and passive, are commonly used.

Active measurement is typically based on a client/server model. The client sends probe

packets to a server that replies back to the client, where both client and server might

perform a timing measurement. For instance, in network throughput testing, one approach

is to send as much data as possible from the client to the server, and compute the

throughput by the size of transferred data (sent or received) and the time of transmission.

This is not the only way to measure throughput, however. Different methodologies have

been proposed and used in order to evaluate network throughput without trying to

saturate the path in such an intrusive fashion. The typical examples are one packet, packet

pair and Multi-packet models [44]. These mathematical models are based on the fact that

characteristics of each packet traveling in a link have some relation to the throughput and

network delay. Consequently, these methods rely on certain assumptions, and may not be

as accurate as direct injection measurement. For instance, the packet pair technique may

send as few as two packets, and the server then judges network throughput by analyzing

the timestamps of these two consecutive packets. These types of measurements are

considered non-intrusive, since they do not significantly increase network traffic during

testing. Examples of tools adopting these techniques include Pathchar [45] and Pathrate

[46]. Active non-intrusive measurement tools are usually used in public networks to

avoid affecting other users.

Passive measurement does not depend on deploying test applications to specific hosts in

the network. Instead, it probes network traffic to compute network performance attributes.

 24

For example, consider TCP’s three-way handshaking sequence—the time interval

between a SYN packet and the corresponding SYN/ACK packet is a measure of the

round trip time (RTT) along the network link between the source and the destination.

Passive measurement does not create extra network traffic and does not have to run client

and server processes in the network. Researchers often use tools such as tcpdump [54] to

capture the raw network traffic for analysis, which is a kind of passive analysis. The ntop

utility [47] is another passive measurement tool showing network statistics with an output

format similar to what the Unix top utility presents. The nettimer [48] utility is another

end-to-end network bandwidth measurement tool that can operate in passive mode.

Passive measurement is usually used in network system monitoring and often works with

SNMP. Generally, people do not use passive measurement to conduct network

benchmarking since it is inflexible and quite difficult to control.

Numerous network measurement tools have been developed; the following are some of

the most commonly used:

• Ping: Ping checks network connectivity and reports the round trip time of a remote

machine. It sends a small ICMP echo request to a destination and then waits for the

ICMP echo response from the host. Ping is a handy tool to check both whether a

networked computer is operating, and the network latency of the path.

• Traceroute: Traceroute shows the network routing and latency information. It is

based on the ICMP error message of the IP protocol that is generated when the Time-

to-Live (TTL) of a packet has been exceeded. When a packet’s TTL reaches zero, an

intermediate router or host returns an ICMP error message to the source host.

Traceroute starts by sending a UDP datagram (not ICMP packet like ping, as routers

may not generate ICMP errors for ICMP messages) to the destination with TTL of 1.

The first-hop router automatically decreases the TTL by 1 in the UDP datagram and

finds the packet has already reached the hop limit (zero). So the router drops the UDP

datagram and sends an ICMP error message to the source. The source host processes

the error message and prints out the round trip time of the first hop, then increases

TTL number by 1 and sends another UDP datagram to the network, waiting for

another ICMP error message from the second-hop router. The same steps continue

 25

until the destination host is reached.

• Ttcp: One of the first TCP throughput testing tools ever written was Ttcp. Many

variations have since been created with some improvements and new options, such as

nuttcp [49] which supports UDP measurement as well and has various configurable

parameters.

• Udpmon [50]: A UDP latency and throughput measurement tool capable of providing

detailed logs for its tests. It uses assembly language to access an Intel CPU cycle

counter for high-precision timing, thus it can only work on IA32/IA64 platforms.

• Netperf [51]: A sophistical network benchmark that can be used to measure the

performance of many different types of networking technologies, including TCP/UDP,

DLPI, Unix Domain Sockets, Fore ATM API, and HP HiPPI Link Level Access.

Netperf is capable of testing both end-to-end unidirectional throughput and latency.

• Iperf [52]: Iperf is a relatively new network benchmark written in C++, while all

other tools discussed above were written in C. It can measure TCP and UDP

throughputs with various tunable parameters and with multi-threaded support. Iperf

does not measure network latency, however.

• NetPIPE [53]: NetPIPE is a protocol independent network performance measurement

tool. It performs simple ping-pong or stream tests. To be protocol independent,

NetPIPE encapsulates network and timing system calls into different modules.

NetPIPE only works with connection-oriented protocols such as TCP and MPI.

Consequently, it does not support UDP communication.

All of these utilities were designed as general purpose network measurement tools. In

HPC environments, however, these tools may not work well and provide a complete

picture of network performance. For example, if we use the utility ping to measure the

network round trip time between two clusters in our test-bed (greatewhite and deeppurple)

we get:

[gw25 ~] $ping dp10
PING dp10.deeppurple.sharcnet (192.168.2.10) from 192.168.3.25 : 56(84) bytes of data.
64 bytes from dp10.deeppurple.sharcnet (192.168.2.10): icmp_seq=0 ttl=62 time=0 usec
64 bytes from dp10.deeppurple.sharcnet (192.168.2.10): icmp_seq=1 ttl=62 time=0 usec
64 bytes from dp10.deeppurple.sharcnet (192.168.2.10): icmp_seq=2 ttl=62 time=0 usec
64 bytes from dp10.deeppurple.sharcnet (192.168.2.10): icmp_seq=3 ttl=62 time=0 usec

 26

--- dp10.deeppurple.sharcnet ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/mdev = 0.000/0.000/0.000/0.000 ms
[gw25 ~] $

The zero RTT time shows that the precision of ping is not high enough for low-latency

networks. For throughput experiments, we used three popular network benchmarks,

nuttcp, netperf and iperf (all latest versions), to test the local throughput of an idle

machine in greatwhite:

[gw20 ~]$ uptime
11:05am up 40 days, 22:05, 1 user, load average: 0.00, 0.00, 0.00
[gw20 ~]$ cd nuttcp-5.1.3/
[gw20 ~/nuttcp-5.1.3]$./nuttcp -t localhost
 1189.1250 MB / 10.00 sec = 997.4572 Mbps 41 %TX
[gw20 ~/nuttcp-5.1.3]$ cd ../netperf-2.2pl5/
[gw20 ~/netperf-2.2pl5]$./netperf -H localhost
TCP STREAM TEST to localhost
Recv Send Send
Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/sec
87380 65536 65536 10.00 955.92
[gw20 ~/netperf-2.2pl5]$ cd ../iperf-1.7.0/
[gw20 ~/iperf-1.7.0]$./iperf -c localhost
--
Client connecting to localhost, TCP port 5001
TCP window size: 64.0 KByte (default)
--
[5] local 127.0.0.1 port 51984 connected with 127.0.0.1 port 5001
[ID] Interval Transfer Bandwidth
[5] 0.0-10.0 sec 1.12 GBytes 983 Mbits/sec
[gw20 ~/iperf-1.7.0]$

The results varied with different implementations: the nuttcp reports the highest

throughput (997Mbps) and netperf reports lowest throughput (956Mbps). It is difficult to

say which measurement is more accurate and better reflects reality. The difference may

be due to different default settings, and the implementation details of the tools.

This creates problems for network performance analysis. If tests produce abnormal

results, we must trace the cause from the network subsystem, and the source code of the

implementation as well.

All of the tools listed above have their own design methodologies and different sets of

tunable options. However, they are still limited in some functionality and do not include

tunable options for a number of interesting parameters. For instance, none of the tools

were able to test non-blocking communication. The cross-platform design of these tools

makes the code very complex and inefficient. For example, the netperf utility consists of

 27

more than 40,000 lines of C code. In such a case, it is quite hard to tune and inset new

source code for additional functionality.

As a result, it was best to implement our own network benchmark tool – Hpcbench,

focusing specifically on the needs and requirements of HPC systems. Hpcbench is

designed to measure high-speed, low-latency communication networks. The objectives

of Hpcbench include:

• High accuracy and efficiency;
• Support for UDP, TCP and MPI communications;
• Tunable communication parameters of interest in an HPC environment;

• Detailed recording of test results, communication settings, and system information.

The implementation of Hpcbench is based on active, intrusive measurement since we are

primarily interested in measuring or benchmarking network behavior and performance.

The MPI benchmarks that test MPI communications actually evaluate the efficiency of

the MPI implementations. With the same benchmark and same system, the results may

vary significantly for different MPI implementations, such as MPICH and LAM/MPI.

We do not consider specific MPI benchmarks in our survey, since they are typically

designed to examine all MPI functions that involve process communication, instead of

network communication, and most of them are not of interest in our current study. We

only test the blocking and non-blocking point-to-point MPI communication, which is

typically associated with TCP end-to-end communication in the network. All other MPI

communications, such as collective operations, are not included in the initial version of

our benchmark.

3.2 Network Performance Metrics

When we discuss network performance, we mainly refer to its four attributes: throughput,

latency, jitter, and loss rate. From the user’s perspective, they are related to speed, delay,

stability, and reliability.

Jitter is the variation of transmission delay in the network, mainly due to network

congestion. Jitter may cause some problem for real-time applications, and jitter is usually

associated with discussions of quality of service (QoS). Jitter is difficult to accurately

 28

measure in HPC networks, since the interval between consecutive packets is very short.

Benchmark overhead may affect the results of experimentation if we attempt to do

timings for each packet. As a result, we have elected not to implement jitter

measurements in the initial version our benchmark.

The packet loss rate is easy to measure in the application layer when an unreliable

transport is used. In UDP communication, suppose the datagram size is less than the

MTU size for the network. In this case, the receiving side retrieves the total number of

sent packets from the last packet’s sequence number (added in application layer), and the

number of lost packets can be counted by subtracting the number of received packets.

However, if the communication protocol used is reliable, such as TCP and MPI, the

measurement of packet loss rate is not trivial, as the transport hides loss by retransmitting

missing or corrupted packets. For example, consider TCP communications. The best way

to compute packet loss in this case is to analyze all input and output packet headers for a

target TCP connection. In order to do this in a typical Unix system, administrative

privileges are needed to install the packet capture library libpcap [54], configure the

network interface cards into a promiscuous mode, and run the appropriate program.

Because of these restrictions, we will not implement the measurement of packet loss for

TCP and MPI in this initial benchmark implementation.

The terms network bandwidth and throughput are often used interchangeably. But this is,

in fact, incorrect. Bandwidth is the data rate supported by the networks, and throughput is

what we actually get in the real world, mostly at the application level. The bandwidth of

Gigabit Ethernet is 109 bit/sec, but we can never reach this number in practice. Network

benchmarks report the effective bandwidth, or achievable throughput, or simply

throughput. Benchmarks typically have tunable options for testing different set of

parameters which could lead to different throughputs. There is a maximum achievable

throughput in a system for each benchmark. Our goal to be able to characterize

throughput results with different parameters for a given HPC system.

To accurately measure network bandwidth, we should let the tested object (the network)

be the bottleneck in the whole system. If the bottleneck is somewhere else, the

measurement will not likely be correct. For example, if a slow machine with a poor

 29

network interface card is used to test a high-speed network, the end results will most

likely depend on that machine instead of the network. Second, the effect of the operating

system should be minimized. Measurements could be affected when system resources are

taxed and scarce. Benchmarks are applications and so can be affected by system

resources, or a lack thereof. We should always attempt testing with two idle machines (no

user programmers running) to measure the maximum throughput possible. Third, the

benchmark itself should be well designed to minimize overhead. A good benchmark

should not consume too many system resources, as this may degrade the system

performance and thereby affect the benchmark itself. The minimization of benchmark

overhead is crucial for testing a relatively slow system. Some expensive system calls may

provide a higher precision calibration, but we should be mindful of the tradeoffs as well.

Protocol overhead is another consideration. For example, the relative protocol overheads

in increasing order are UDP, TCP, and MPI; thus, the measured throughput of UDP

should be higher than TCP’s, which is higher than MPI’s, if the benchmark is well

designed and fine tuned properly.

Hpcbench is designed to measure UDP/TCP/MPI unidirectional and bidirectional

throughput. For TCP and MPI communication, both blocking and non-blocking

communication can be examined. To avoid benchmark overhead, Hpcbench attempts to

minimize system calls for throughput tests.

Generally, network latency refers to the delay introduced by the network, specifically the

time it takes for a small packet to traverse from one end to the other in the network. This

definition, however, is still unclear. The small amount of data could be one byte or ten

bytes, and the end could be the physical connection point of a network interface card or at

the application layer.

In most cases, we are only able to measure the network latency using an application.

With application level latency measurement, the time synchronization of the two end

systems involved in the communication can be a problem. Even using NTP (Network

Time Protocol), there is still some difference and drift over the synchronized time.

Consequently, researchers often use a request/response model—an application sends a

request to destination and waits for the response from the other end, and then divides the

 30

measured time by 2 to approximate one-way network latency. This approach only uses

one clock in the source host without needing to consider the time synchronization issue.

There are two assumptions in this approach, however: the network has symmetric delays

and the processing time for responding to the request in the destination host is trivial.

In this thesis, we use the term round trip time (RTT) for our network latency tests. We

also need to specify the application or protocol for the tests, such as UDP round trip time.

Since the ICMP-based ping utility is widely used, we also use UDP ping, TCP ping, or

MPI ping in our discussion, corresponding to the UDP, TCP or MPI RTT test

respectively.

Hpcbench is designed to be able to measure the UDP/TCP/MPI round trip times. Since

one RTT in HPC systems can be very short (at the microseconds level), we iterate the

request/response many times to minimize the effects of a timer’s precision. So, in essence,

our RTT tests are actually blocking ping-pong tests. Hpcbench automatically calculates

the iteration for all RTT tests (refer to Section 3.5 for more details).

3.3 Communication Model

Hpcbench was written in C and uses the MPI API. It is comprised of three independent

sets of benchmarks measuring UDP, TCP, and MPI communications. The UDP and TCP

communications are via BSD sockets.

In TCP/IP communication tests, our client/server model includes two channels during the

testing: a data channel and a test channel. The first is a reliable TCP connection for

critical data communication and the real test channel (UDP or TCP) is over the other

channel, as shown in Figure 3-1.

Figure 3-1 Two-channel Communication Model

 31

This two-channel design makes it easier to control the tests (we might repeat tests many

times), especially for UDP tests. The data channel is used by Hpcbench for control of the

tests and only involves data transfer before each test starts and after each test ends. Thus,

it does not introduce significant extra traffic or overhead during actual testing.

Another reason we use two connections for the tests is due to BSD socket settings. Some

socket options, such as socket buffer size settings (setsockopt() system call), should be set

before the listen() system call in the server and connect() system call in the client. If there

is only one connection between the client and server, we must start the server process

with a long argument set according to the client’s test setting, and we have to restart the

server process with different parameters every time the test mode changes. With two

connections, the client is able to send all the test parameters to the server by first

establishing the data channel and then creating the test channel with the desired options.

Thus, the server process does not have to be concerned with test parameter settings

during startup.

MPI communication is on top of the network subsystem of the operating system. It is

much easier to control the test procedure involving MPI, since most detailed

implementations of communication is transparent to the application layer. For point-to-

point communication tests, we only need to specify the MPI send and receive functions,

data type, and data size for master and slave processes.

3.4 Timers and Timing

All operating systems need a way to measure and keep track of time on the system. A

high-precision timer is vital for all kinds of benchmarks.

A typical Linux system, for example, includes several types of clocks. A real-time clock

(RTC) is a battery-powered hardware clock, which is independent of CPUs and other

devices. The RTC is used to keep time and date information even when the computer is

turned off. It is possible to access and change this time through the kernel (such as the

usage of NTP), but it is very expensive and rarely used by regular applications.

The second is an architecture-dependent CPU Cycle Counter. The CPU Cycle Counter

has a very high resolution (1 nanosecond for a 1GHz CPU). For example, Intel processors

 32

(Pentium or later) include a 64-bit Time Stamp Counter (TSC register) that is updated by

hardware at each CPU clock signal, which can be read by rdtsc assembly instruction. In

the network subsystem, each packet timestamp is created by this counter. The platform-

dependent CPU cycle counter is the highest resolution timer available for the systems.

Unfortunately it cannot be accessed in a general, platform-independent way very easily.

The third clock is the Programmable Interval Timer (PIT), also called kernel timer or

kernel clock. Linux uses the PIT to produce the “heartbeat” for the kernel to keep track of

the time. The heartbeats are issued by means of hardware interrupts. The time interval of

each heartbeat is called a tick with coarse granularity (e.g., 10ms for Intel x86 systems

and around 1ms for Alpha systems). The term of jiffies refer to the number of ticks since

system boot time. Shorter ticks result in higher resolution timer, which can speed up the

response time of I/O multiplexing (the select() system call, for instance). The trade-off is

that the CPU spends more of its time in kernel mode and less time in user mode, which

will slow down user programs. In Linux boxes, the resolution of the PIT (tick) is defined

by the HZ constant (frequency of HZ per second) in /usr/include/asm/param.h, and it is

not allowed to be changed after kernel compilation.

For some SMP systems, each CPU may have a local timer called the APIC (Advanced

Programmable Interrupt Controller) timer that produces interrupts similar to the PIT’s.

The APIC timer is mainly used for kernel scheduling. The APIC is seldom used by

applications.

From the user space, there are a number of system calls that are related to these timers:

• clock(): returns an approximation of process time in clock ticks (clock_t type) used by

the program. The ticks are counted from an arbitrary point in the past such as system

or process startup time. To convert to the number of seconds, the value should be

divided by the constant CLOCKS_PER_SEC.

• times(): returns the process time of process in clock ticks with data structure tms. The

structure includes the user/system times of the process and its children.

• getrusage(): returns the current resource usage in a data structure of type rusage,

including user/system time used and some other process information.

 33

• time(): returns the number of seconds (time_t structure) since the Epoch defined as

00:00 (midnight) of Jan. 1, 1970 (UTC).

• gettimeofday(): returns the value of elapsed time since the Epoch with resolution of

microseconds, with the timeval data structure that contains the number of seconds and

microseconds.

• clock_gettime(): a POSIX system call that returns a timespec structure that contains

the number of seconds and nanoseconds. Typically clock_gettime() has a higher

resolution than gettimeofday(). By default, clock_gettime() is not available on most

Linux distributions with kernels before 2.5.x, including RedHat, but is available

through kernel patches [55].

The clock(), times() and getrusage() system calls are associated with process (virtual)

time, while time(), gettimeofday() and clock_gettime() system calls are considered as the

real elapsed time, or wall-clock time. Hpcbench uses getrusage to trace the process usage

and use gettimeofday() to record the time spent for the tests.

Figure 3-2 shows the resolutions of these system calls. Although the process times

(ru_utime and ru_stime) in the data structure rusage returned by getrusage include

microseconds, its resolution is limited to the HZ value (tick), since its implementation is

based on the kernel timer.

secmsµsns

Instructions gettimeofday()

getrusage()
times()
clock()clock_gettime() time()

Figure 3-2 Time Scale of Computers with 1GHz CPU (HZ=1000)

The following code tests the precision of gettimeofday() system call by invoking the call

100000 times.

#include <stdio.h>
#include <sys/time.h>

#define NUM 100000

int main (int argc, char *argv[]) {
 int i, count=0, loop=0;
 int elapsed_time[NUM]={0}, resolution[NUM]={0}, cost[NUM]={0};
 struct timeval start, end;

 34

 gettimeofday(&start, NULL);
 for (i = 0; i < NUM; i++) { // Repeat calling gettimeofday() many times
 gettimeofday(&end, NULL);
 elapsed_time[i]=(end.tv_sec-start.tv_sec)*1000000+(end.tv_usec-start.tv_usec);
 start = end;
 }
 for (i = 1; i < NUM; i++) { // Calculate the resolution and its idle loops
 if ((resolution[count]=elapsed_time[i]-elapsed_time[i-1])>0) {
 cost[count++] = loop + 1;
 loop = 0;
 } else
 loop++;
 }
 printf("Output: Resolution[usec] Overhead[usec]\n");
 for (i = 0; i < count; i++) // Print out the results
 printf("%d %f\n", resolution[i], resolution[i]*1.0/cost[i]);

 return 0;
}

For comparison, we tested the resolution of gettimeofday() in several platforms, including

Alpha, Intel Xeon and Pentium, SPARC and SPARC SMP systems. The results are

summarized in Table 3-1. The cost of the system call is also included. We can see the

SMP systems spent more time on gettimeofday() invocation. This is probably due to some

form of kernel synchronization.

Resolution (µsec) System call cost (µsec) Architecture OS
Min Avg Max Min Avg Max

HP Alpha SMP1 Linux 2.4.21 976 976 977 0.57 0.61 0.86
Intel Xeon SMP2 Linux 2.4.20 1 1 1 0.33 0.47 0.50
Intel Pentium3 Linux 2.4.20 1 1 1 0.14 0.17 0.20
Sun Sparc SMP4 SunOs 5.8 1 1 67 0.17 0.49 67
Sun Sparc5 SunOs 5.8 1 1 213 0.06 0.15 106.5

Table 3-1 The Resolution and Overhead of gettimeofday() in Different Architectures

Results show that the resolution of gettimeofday() is around 1µsec in most cases, which is

as we expected. But in the Alpha SMP systems, it drops to lower than 1ms. Why? Let us

take a closer look of how gettimeofday() works in a Linux system. gettimeofday() leads

to kernel function sys_gettimofday() call that is defined in /Linux-src/kernel/time.c, which

invokes do_gettimeofday() to retrieve the current time. do_gettimeofday() is implemented

in /Linux-src/arch/i386/kernel/time.c for Intel architectures and in /Linux-

src/arch/alpha/kernel/time.c for Alpha systems. It actually updates the kernel’s global

variable xtime (kernel clock). In the Intel architecture, the do_fast_gettimeoffset()

1 Tested on an idle machine in the greatwhite 2 Tested on an idle node in the mako 3 Tested on an idle desktop with Pentium 500MHz
CPU 4 Tested on algernon.csd.uwo.ca 5 Tested on durendal.syslab.csd.uwo.ca

 35

function in time.c is invoked to compute the precise time in microseconds after the last

tick. This is done by reading the high-precision CPU cycle counter (TSC register) with

assembly language. On the other hand, the Alpha system does not do this for a finer

granularity, and all computation is based on jiffies. The reason not to read the CPU cycle

counter for the Alpha system is that in the Alpha system, only the low 32-bits of the CPU

cycle counter are readable, and this value will wrap around in a very short time (about 4

seconds for a 1GHz CPU), making this high-precision timer unusable for most timing

tools. Thus, gettimeofday() only has the resolution of a kernel clock tick, which is equal

to 1000000/1024 = 976.5 µsec (HZ=1024 in Alpha systems), agreeable with our

measured results.

Even though gettimeofday() in the Alpha system has a relatively low resolution, it is still

the best system call we can use for timing currently. To improve accuracy during testing,

we can increase the test workload and test time. For example, if the test time is more than

5 seconds, the error caused by the timing will be less than 1/5000=0.02%, which is

acceptable in most experiments.

For latency (RTT) tests, we only measure time using the client’s timer. For throughput

tests, we must consider timing synchronization between the client and the server. One

approach is to put a timestamp in each packet. The other end (client or server) compares

the local time to the time in the packet to get a time offset for the sender. To take the

network latency into account, a round trip time test can be conducted.

This approach is not perfect. First, as we mentioned, network latency may not be equal to

½ RTT. Second, getting a high-precision local time is expensive (refer to Table 3-1). If

the gettimeofday() system call is invoked for each packet sent or received, the total cost is

considerable, especially in high-speed networks which support tens of thousands packets

per second. Third, as we have seen, the Alpha systems only support 1ms timer resolution,

making any other effort for time synchronization not applicable.

Our solution to this issue is a high level synchronization. We do not synchronize the

timer of the two end machines. Instead, the client and server notify each other before

each test starts. After this initial communication, both the client and the server start

timing, and then compute throughput by their local elapsed time separately. With this

 36

approach, the gettimeofday() is only called at the start and the end point of each test

rather than one invocation for each packet sent or received. We will discuss this

communication synchronization in the next section.

All MPI implementations include a MPI_Wtime() function call that is able to select the

best timer for MPI communication timing. We will use this function call in our MPI

benchmark. In fact, MPICH also invokes gettimeofday() if it is available.

3.5 Iteration Estimation and Communication Synchronization

In HPC environments, the round-trip time is too short to be measured by a relatively low-

precision timer, as the ping test example showed in Section 3.1. Timer resolution may

also affect the results of throughput tests. For example, in a Gigabit Ethernet, a message

of 1 MB can be sent out in less than 0.01 seconds. To reduce the effects of relatively poor

timer resolutions, test durations should be long enough to minimize this effect.

Consequently, we repeat transmission of the same message many times to measure

network throughput and network latency. In Hpcbench, the number of times to repeat

transmission (iteration) is computed by an estimation test conducted before the real test

starts. Estimation test starts from a small number of repetitions (iteration), and compares

the elapsed time with the defined test time. The repetition number will exponentially

increase until the elapsed time is greater than the defined test time, then the iteration

number for desired test time can be calculated. With this approach, Hpcbench is able to

measure the network latency and throughput with nearly any message size and desired

test time in high performance networks.

Most network measurement tools such as netperf and iperf conduct throughput tests for a

time period with a default sending size, and their message size is not configurable. This

can be inconvenient and unnecessarily limit the test options that are available during

experimentation. This limitation may have been introduced as TCP/IP was treated as a

stream protocol instead of a message protocol, with the rationale that there is no

difference between sending 100MB and 100KB, because all data are sent by system calls

that divides this data into smaller packets. This is a common misconception, but is

slightly inaccurate for detailed performance analyses. Consider the case of sending

100MB of data through the network. First, consider an implementation in which all data

 37

to be sent can be buffered in memory. The function write(socket, buffer, data-size) is then

repeatedly called until all of the data has been sent. Second, consider the case where there

is only a small memory buffer, say with a relatively small default size of 4KB or 8 KB.

Now the function write(socket, buffer, default-size) is again called many times until all

data has been sent out. The second method is used by all of the benchmarks we have

examined and mentioned earlier in this thesis. Are these two methods the same? In the

end, it depends on the underlying socket implementation. One system call write(socket,

buffer, 100MB) could (and likely would) send more than 8KB. In such a case, the number

of write() system calls in the first case will be less than that of second case for the same

total amount of data transferred, which may lead to different results. This is especially

true for a network that supports large frames (refer to Section 4.1.2). Furthermore, even

the resulting memory access with different patterns may result in different performance.

As a benchmark, it is important to consider these different situations. Hpcbench supports

tunable options for message size and the data size of each transmission as well. If the

latter is not defined, then 8KB is used for TCP tests and 1460-bytes for UDP tests. To

avoid the effects of potential data compression functionality in networks, Hpcbench also

carries out a randomization process for the data being transmitted.

Another pre-test is the synchronization procedure that ensures that the client and the

server have the same baseline for timing. This test should be conducted in the data

channel. The synchronization before the start of timing is pre-synchronization and starts

by sending a tiny SYNC1 packet (2 bytes) from the client. When the server receives this

packet, it bounces back a small ACKSYNC packet (2 bytes) to the client. The client

receives this acknowledgement, and sends another SYNC2 packet (2 bytes) to the server.

At this point, the client starts the timing for the test. The server will start timing after

receiving the SYNC2 packet. The purpose of SYNC2 is to let the server be aware of the

RTT value. Now both client and server can start actual testing, and have some measure of

the round trip time of the link when the test began.

 38

Data

2 Bytes

2 Bytes

2 Bytes

Client Server

Start timing

Stop timing

Start timing

Stop timing

RTT

RTTPre-synchronization

Data

2 Bytes

2 Bytes

2 Bytes

2 Bytes

Client Server

Start timing

Stop timing

Start timing

Stop timing

Send out

RTT

RTTPre-synchronization

Post-synchronization

Synchronization of pingpong test Synchronization of stream test

Figure 3-3 Communication Synchronization

For unidirectional stream tests, we have a post-synchronization step to help measure the

computation of the client’s throughput, as illustrated in the right side of Figure 3-3. This

is because the client may complete before the server receives the data. When the send

function returns, the data will first be buffered in the kernel space. The amount of

buffered data could be as large as 1MB, or possibly higher, if the socket buffer is large

enough. The time that it takes to send this data out to the network depends on the system

workload and the congestion of the local network (LAN). The time for the server to

receive all of this data depends on network bandwidth and network congestion. We take

both of these possible delays into account when we calculate the throughput on the client

side. This post-synchronization does introduce additional overhead (about ½ RTT). To

produce more accurate results, we can subtract this ½ RTT to compute the elapsed time

on the client side for the post-synchronization process, and for server we can add ½ RTT

for the pre-synchronization to compute throughput on the server side.

The communication synchronization model shown in Figure 3-3 has been applied to

Hpcbench for TCP and MPI communication tests. In UDP tests, the post-synchronization

step is unnecessary since UDP communication is connectionless. The UDP local

throughput is computed when the last packet is sent out (e.g. write() returns). To inform

the server of the termination of a test, the client sends a number of UDP FIN packets (the

number is defined by MAXFIN in udplib.h) to the server, assuming that the server is able

to receive at least one of them. The server stops timing when this signal is received,

 39

computes the server side throughput and packet loss rate, and then sends the server side

statistics to the client on the TCP data channel. If all UDP FIN packets are lost, the result

of this round of experimentation is ignored, as an extremely abnormal event must have

occurred in the network to produce this effect.

While we have strived to achieve as high an accuracy as possible in our measurements, in

high performance networks, some additional functionality of the NICs (e.g. interrupts

coalescence) could cause some unforeseen delays, and slightly reduce the accuracy we

would ordinarily expect. We will discuss this issue further in the next chapter.

3.6 System Resource Tracing

System resource limitation can greatly affect network performance. For instance, the

performance of an entire system (including the network subsystems) would dramatically

degrade when the system’s physical memory is completely used and extensive page

faulting occurs. As well, system load can also affect network performance. We test the

network throughput between two nodes using iperf. We select three nodes in

hammerhead to test their throughput, where the idle node hh5 ran as client, the idle node

hh20 ran as server, and the busy node hh10 (100% usage) ran as another server:

[hh5 ~/iperf-1.7.0] $ uptime
 8:12pm up 16 days, 7:02, 1 user, load average: 0.00, 0.00, 0.00
[hh5 ~/iperf-1.7.0] $./iperf -c hh20
--
Client connecting to hh20, TCP port 5001
TCP window size: 64.0 KByte (default)
--
[5] local 192.168.4.5 port 52213 connected with 192.168.4.20 port 5001
[ID] Interval Transfer Bandwidth
[5] 0.0-10.0 sec 624 MBytes 518 Mbits/sec
[hh5 ~/iperf-1.7.0] $./iperf -c hh10
--
Client connecting to hh16, TCP port 5001
TCP window size: 64.0 KByte (default)
--
[5] local 192.168.4.5 port 52214 connected with 192.168.4.10 port 5001
[ID] Interval Transfer Bandwidth
[5] 0.0-10.1 sec 9.84 MBytes 8.19 Mbits/sec
[hh5 ~/iperf-1.7.0] $uptime
 8:13pm up 16 days, 7:03, 1 user, load average: 0.04, 0.01, 0.00
[hh5 ~/iperf-1.7.0] $

The iperf reports that the achievable TCP throughput between hh5 and hh20 was about

518 Mbps; while throughput between hh5 and hh10 was less than 10 Mbps. The

difference of server’s system load led to different achievable throughputs. At the same

time, network communication tests also introduce workload to the system. Consequently,

 40

besides the throughput itself, the system resources, such as the CPU utilization during the

testing, is important for us to understand the system behavior. We would like to

implement such functionality in Hpcbench.

Process resource usage statistics can be retrieved using the getrusage() system call, as

mentioned in Section 3.4. The measurement of CPU resource consumption is not trivial,

however. In most Unix systems, the CPU usage is measured by sampling the CPU status.

This approach is highly platform-dependent. For example, the popular system monitor

utility top includes more than 30 source files in its implementation, and supporting CPU

measurement for different architectures accounts for a large portion of its code. Because

of this, most network measurement tools do not trace system resources.

In a Linux system, we can measure the CPU usage by parsing files in the /proc virtual file

system (VFS). Linux’s VFS is a wrapper implementation to handle all kinds of file

system calls. It provides an interface for different file systems such as disk-based local

file systems (Ext3, NTFS, XFS, etc.) and network file systems (NFS, AFS, Coda, etc.).

The files in the /proc directory are part of a special virtual file system that is not

associated with a block device, but rather exists only in kernel memory. These special

pseudo-files refer to different kernel memory areas that contain many kernel

configuration parameters. This allows programs in the user space to access certain kernel

information with ease. There are several subdirectories in the /proc directory, with the

numerical subdirectories corresponding to running processes, and others storing system

kernel parameters and operating statistics. To trace system kernel resources related to

networking, we are interested in four files in /proc:

• /proc/interrupts: records the number of interrupts for each IRQ.

• /proc/meminfo: records physical and swap memory and their usage.

• /proc/stat: records kernel statistics including CPU jiffies, pages in/out, swaps in/out,

context switches, total interrupts, and so on.

• /proc/net/dev: records network device status information such as the number of

packets and bytes received and sent, the total collisions observed, and other statistics.

 41

By parsing these virtual files, we are able to monitor a system’s CPU usage and workload

distribution, memory usage, the number of interrupts the kernel received, the number of

interrupts each network interface card (NIC) raised, and other statistics for each NIC. The

pseudo code for a client to monitor the system during throughput tests (fixed size, ping-

pong mode) is as following:

start trace-system
sleep 1 second
stop trace-system
record the pre-test syslog
do iteration-estimation
for (i = 1 to repeat) do{

inform server the iteration
start trace-system
start timing
for (j = 1 to iteration) do {

send data
receive data

}
stop timing
stop trace-system
compute ith throughput
record ith syslog

}
start trace-system
sleep 1 second
stop trace-system
record the post-test syslog
write all to log files

Figure 3-4 The Pseudo Code of System Resource Tracing for Throughput Tests

The pre-test and post-test system resources are logged for comparison purposes. The

following illustrates the logged information:

[hh25 ~/hpcbench/tcp]$./tcptest -h hh26 –c -o out -r 3
 (1) : 521.247565 Mbps
 (2) : 522.272930 Mbps
 (3) : 521.964908 Mbps
Test done!
Test-result: "out" Local-syslog: "out.c_log" server-syslog: "out.s_log"
[hh25 ~/hpcbench/tcp]$ cat out.c_log
hh25 syslog -- Mon Aug 3 18:25:30 2004
Watch times: 5
Network devices (interface): 1 (eth0)
CPU number: 4

System info, statistics of network interface <eth0> and its interrupts to each CPU #####
CPU(%) Mem(%) Interrupt Page Swap Context <eth0> information
Load User Sys Usage Overall In/out In/out Swtich RecvPkg RecvByte SentPkg SentByte Int-CPU0 Int-CPU1 Int-CPU2 Int-CPU3
0 0 0 0 17 4106 0 0 12 0 0 1 66 0 2 0 0
1 21 0 21 17 67269 32 0 12894 47529 3137248 223862 338915925 0 46857 0 0
2 22 0 21 17 67557 0 0 12746 48299 3190803 223866 338921537 0 47188 0 0
3 21 0 21 17 67508 0 0 12726 48328 3189688 223862 338916005 0 47132 0 0
4 0 0 0 17 4144 224 0 8 4 414 0 0 0 3 0 0

 42

CPU workload distribution:
CPU0 workload (%) Overall CPU workload (%)
< load user system idle > < load user system idle >
0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0
1 0.0 0.0 0.0 100.0 22.0 0.0 21.9 78.0
2 0.0 0.0 0.0 100.0 22.0 0.0 22.0 78.0
3 0.0 0.0 0.0 100.0 21.5 0.0 21.5 78.5
4 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0

CPU1 workload (%) Overall CPU workload (%)
< load user system idle > < load user system idle >
0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0
1 60.5 0.0 60.5 39.5 22.0 0.0 21.9 78.0
2 60.5 0.0 60.5 39.5 22.0 0.0 22.0 78.0
3 61.0 0.0 61.0 39.0 21.5 0.0 21.5 78.5
4 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0

CPU2 workload (%) Overall CPU workload (%)
< load user system idle > < load user system idle >
0 0.1 0.0 0.1 99.9 0.0 0.0 0.0 100.0
1 27.3 0.1 27.2 72.7 22.0 0.0 21.9 78.0
2 27.6 0.2 27.4 72.4 22.0 0.0 22.0 78.0
3 25.1 0.1 25.0 74.9 21.5 0.0 21.5 78.5
4 0.2 0.1 0.1 99.8 0.0 0.0 0.0 100.0

CPU3 workload (%) Overall CPU workload (%)
< load user system idle > < load user system idle >
0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0
1 0.0 0.0 0.0 100.0 22.0 0.0 21.9 78.0
2 0.0 0.0 0.0 100.0 22.0 0.0 22.0 78.0
3 0.0 0.0 0.0 100.0 21.5 0.0 21.5 78.5
4 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0
[hh25 ~/hpcbench/tcp] $

These detailed reports of system resources are important for us to understand the

interaction of the kernel and the network subsystem. In the above example, we know that

the client system was originally idle; the system load was about 20% for TCP stream

communication, and its workload was distributed to CPU1 and CPU2. We will look at

this in more detail in the next chapter.

It is important to note that the system information traced by /proc files is not accurately

synchronized to each test because of the parsing delay and the deviation of updates of

those virtual files. These statistics can consequently only show us a rough view of kernel

information during tests.

3.7 UDP Communication Measurement Considerations

UDP communication is connectionless and so there are some subtle considerations in

implementing UDP communication tests. In UDP latency (RTT) tests, the server is

responsible for bouncing back the datagram it received. Generally, the server application

may use the following code to measure the UDP latency:

 43

 { // Start example block
 timeOut.tv_sec = 5; // Maximum time 5 seconds
 timeOut.tv_usec = 0;

 for (i = 0; i < iteration; i++) {
 FD_SET(serverUdpSocket, &readSet);
 rval = select(serverUdpSocket+1, &readSet, NULL, NULL, &timeOut);
 if ((rval > 0) && (FD_ISSET(serverUdpSocket, &readSet))) { // Socket readable
 msg = recvfrom(serverUdpSocket, buffer, packetSize, 0,
 (struct sockaddr*)&clientAddress, &addrSize);
 if (msg < 0 && errno != EINTR) { // Read error
 perror("UDP server receive");
 return -1;
 }
 if(sendto (serverUdpSocket, buffer, msg, 0,
 (struct sockaddr*)&clientAddress, addrSize) < 0) {
 perror ("UDP server send");
 return -1;
 }
 } else if (rval == 0) { // Timeout
 perror("UDP server time out");
 return -1;
 }
 } // End of for loop
 return 0;
 } // End of example block

There is nothing wrong with above code; but, it is not optimized as the select() system

call can be quite expensive. In Gigabit Ethernet, there can be tens of thousands of

iterations for a one second test. This many system calls can introduce additional

unwanted overhead for a RTT test. We can reduce the number of system calls by using a

signal-driven approach, which is illustrated below:

int timeOutFlag; // global variable
static void timeOutHandler() // Signal handler
{
 timeOutFlag = 1;
 return;
}
…

 { // start example block

 if (signal(SIGALRM, timeOutHandler) == SIG_ERR) {
 perror("Set alarm signal");
 return -1;
 }
 timeOutFlag = 0;
 alarm (5); // Maximum test time 5 seconds

 for (i = 0; i < iteration; i++) {
 if ((msg=recvfrom(serverUdpSocket, buff, packetSize, 0,
 (struct sockaddr*)&clientAddress, &addrSize)) < 0) {
 alarm(0); // Cancel timer
 perror("UDP server receive error");
 return -1;
 }
 if (timeOutFlag) {
 fprintf(stderr, "UDP server time out\n");
 return -1;
 }
 if (sendto (serverUdpSocket, buff, rval, 0,
 (struct sockaddr*)&clientAddress, addrSize) < 0) {
 perror("UDP server send error");

 44

 alarm(0); // Cancel timer
 return -1;
 }
 } // End of for loop
 alarm(0); // Cancel timer
 return 0;
 } // End of example block
…

In this code, there is no extra select() system call inside the for loop. The system load was

significantly reduced, and thus the accuracy of measurement can be improved in some

relatively slow systems. Experiments showed that measured UDP RTTs were about 5 to

10 percent less than those measured using the previous approach, depending on the

packet size (as tested in greatwhite).

However, there are two issues in the above implementation. First, there are two possible

race conditions for the alarm(5) call in the above code. It is possible that the alarm signal

occurs before the first recvfrom() call. It is also possible the alarm signal occurs after

testing the timeOutFlag condition and before next recvfrom() call. In both cases, the

server will be pending in recvfrom() forever if the awaited UDP datagram is lost. Second,

in Linux (kernel 2.4.x), many system calls are automatically restarted when a SIGALRM

signal handler returns, including recvfrom(). Consequently the time out signal handler

does not function properly in this code.

To solve the problem, we use sigsetjmp() and siglongjmp() system calls. One might use

the setjmp() and longjmp() system calls, but they may not work properly in some Linux

SMP systems since the SIGALRM may be ignored by the kernel.

static sigjmp_buf alarm_env; // Time out environment
static void timeOutHandler() // Time out handler
{
 siglongjmp(alarm_env, 1);
 return;
}
…
 { // Example block

 if (signal(SIGALRM, timeOutHandler) == SIG_ERR) { // Set signal handler
 perror("Set alarm signal");
 return -1;
 }
 if (sigsetjmp(alarm_env, 1) != 0) { // Set the jump point
 error = TIMEOUT;
 return -1;
 }
 alarm (5); // Maximum test time 5 seconds
 for (i = 0; i < iteration; i++) {
 if ((msg=recvfrom(serverUdpSocket, buff, packetSize, 0,
 (struct sockaddr*)&clientAddress, &addrSize)) < 0) {
 alarm(0); // Cancel timer

 45

 perror("UDP server receive error");
 return -1;
 }
 if (sendto (serverUdpSocket, buff, rval, 0,
 (struct sockaddr*)&clientAddress, addrSize) < 0) {
 perror("UDP server send error");
 alarm(0); // Cancel timer
 return -1;
 }
 } // End of for loop
 alarm(0); // Cancel timer
 return 0;
 } // End of example block

Exception and time out handling is very important in UDP communication because UDP

datagrams may be lost during tests. In practice, we can use setitimer() instead of alarm()

to get a finer alarm timer, and use sigaction() to more safely control the signals. Notice

there is only one timer available to generate a SIGALRM signal for each process, and a

new alarm timer will override the previous timer setting. Also note that the alarm timer

should be canceled before the function normally returns.

If several time-out controls are needed at the same time, we can combine calls to alarm()

and select(), or use nested select()s. There is one significant difference between the

implementation of select() in Linux and many other variations of Unix, such as Solaris:

Linux modifies the fields of timeval data structure passed into the function depending

how much time is left when select returns, while most Unix systems keep it intact. The

implementation should take care of this for different platforms when the time out control

is placed inside a loop.

Since UDP communication is connectionless, it has no congestion and flow control

mechanisms as TCP does. It is good to have a UDP traffic generator with throughput-

constraint functionality so than we can simulate network traffic for some analysis, such as

the study of QoS in congested environment. Consider a machine capable of sending UDP

datagrams of size 1000 Bytes with 800Mbps throughput. The average length of each

transmission is:

time_interval = total-sent-bits / throughput = 1000 x 8 / 800 = 10 µsec

If we have the sender pause 10 µsec between each send function call, the throughput will

be around 400Mbps. Similarly, a 5 µsec delay interval may result in 600Mbps throughput:

 46

time10µs0

send data

30µs20µs

pause send data send data pause

Figure 3-5 Ideal Pause for UDP Sender

This approach looks reasonable; however, there are no system calls with this kind of

high-precision delay. The usleep() and nanosleep() system calls imply that they have

microsecond and nanosecond resolution respectively, but this may not actually be the

case in reality. We conducted resolution tests for these two system calls in different

platforms with similar testing to what was used earlier with gettimeofday(). Table 3-2

lists the results, showing that both usleep() and nanosleep() are coarse-grain in resolution.

The reason is that these two system calls are based on the kernel timer, which is low-

precision as we discussed earlier in Section 3.4.

Elapsed time in µsec for usleep() with different
parameters of 0, 1, 10, 10000, and 100000.

(average of 100 tests)
Architecture OS

0 1 10 10000 100000
HP Alpha SMP Linux 2.4.21 976 1953 1953 11719 101570
Intel Xeon SMP Linux 2.4.20 9916 19999 19999 19999 110000
Intel Pentium Linux 2.4.20 9944 19999 19998 19996 110127
Sun Sparc SMP SunOs 5.8 1 19979 19990 19993 109995
Sun Sparc SunOs 5.8 1 19989 19991 19996 109997

Elapsed time in µsec for nanosleep() with different
parameters of 0, 1, 10, 10000, and 100000.

(average of 100 tests)
Architecture OS

0 1 10 10000 100000
HP Alpha SMP Linux 2.4.21 976 1953 1953 2011 101853
Intel Xeon SMP Linux 2.4.20 9998 19999 19999 19999 110000
Intel Pentium Linux 2.4.20 10012 19992 19998 19998 109969
Sun Sparc SMP SunOs 5.8 3 4 4 9994 107292
Sun Sparc SunOs 5.8 2 4 4 9998 105799

Table 3-2 The Elapsed Times for usleep() and nanosleep() System Calls

The same problem occurs to the setitimer() system call. We could not rely on the

setitimer timer function for high-precision delay because of the usage of low-resolution

kernel timer, although it includes fields with microsecond resolution. We use a high level

self-judgment approach to ensure the sending rate converges to the specified throughput.

 47

If the real-time sending rate at a given moment is greater than the specified transfer rate,

a longer time for delay, corresponding to the previous delay time, will occur before the

next transmission; otherwise the delay between each transmission will decrease, as

illustrated as follows:

void delay_usec(int usec) // Pause for microseconds
{
 struct timeval startTime, endTime;
 int delay = 0;

 if (usec <= 0) return;
 gettimeofday(&startTime, NULL);
 while (delay < usec) {
 gettimeofday(&endTime, NULL);
 delay = (endTime.tv_sec - startTime.tv_sec) * 1000000
 + endTime.tv_usec - startTime.tv_usec;
 }
 return;
}
…
 { // example block
 if (targetThroughput > 0) { // Init the delay if throughput constraint defined
 delayTime = (8*1000000LL*dataSize/targetThroughput);
 if (delayTime < 1) delayTime = 1;
 }
 gettimeofday(&startTime, NULL); // Start timing
 do {
 if ((rval=sendto(udpSocket, buff, dataSize, 0,
 (struct sockaddr *)&serverAddress, sizeof(serverAddress))) < 0){
 perror("UDP send error");
 return -1;
 }
 sentBytes += rval;
 sentPackets ++;
 gettimeofday(&endTime, NULL);
 elapsedTime = (endTime.tv_sec - startTime.tv_sec) * 1000000LL
 + endTime.tv_usec - startTime.tv_usec;
 if (targetThroughput > 0) { // Adjust the delay between each sending
 if (elapsedTime > 0) // Compute the current throughput
 throughput = sentBytes*8*1000000/elapsedTime; // bit/sec
 if (throughput > targetThroughput) // Increase delay
 delayTime++;
 else if (delayTime > 0) // Reduce the delay
 delayTime--;
 delay_usec(delayTime);
 } // End of delay adjustment
 } while (elapsedTime < targetTime);
 } // End of example block
…

In Hpcbench, when a throughput constraint is defined, the UDP sender self adjusts its

sending pace to achieve the target throughput. When the –g option is specified, Hpcbench

works as a UDP traffic generator with desired throughput and packet size. In such a case,

the target host can be any networked machine, regardless of whether or not it is running a

UDP server process, since UDP is a connectionless protocol. In such a case, it is

important to remember, however, that the injected UDP traffic could affect the

performance of the network and the target machine.

 48

3.8 Summary

In this chapter, we presented a survey of network benchmarks, and discussed key issues

for benchmarking in High Performance Computing environments. We introduced

Hpcbench, a Linux-based network measurement tool, and discussed its design

methodology, including its communication model, test timing, synchronization,

benchmark overhead.

Hpcbench was carefully designed to work with high performance networks to provide

accuracy, efficiency, and functionality. It is capable of logging test result details and

detailed system information of both a client host and server during the tests, including

CPU utilization, memory usage, interrupts, and so on. We will use Hpcbench to examine

the network performance of Gigabit Ethernet, Myrinet and QsNet in the next two

chapters of this thesis.

 49

Chapter 4

Investigation of Gigabit Ethernet in HPC Systems

In this chapter, we present results from a study of the performance of Gigabit Ethernet in

HPC systems using Hpcbench. We begin with a discussion of underlying Gigabit

Ethernet technologies, and then report on several studies of its performance. Specifically,

we look at interrupts coalescence, jumbo frame size, and zero-copy techniques that are

associated with modern Gigabit Ethernet technologies. We then explore the interactions

between network communications and the system kernel in Alpha and Intel Xeon

architectures, and study the network performance associated with various configuration

parameters and settings.

4.1 A Closer Look at Gigabit Ethernet

In this section, we first review a number of technologies that have been used to

implement Gigabit Ethernet and improve its overall performance. We examine properties

of the protocol itself, interrupt handling and the use of jumbo frames, and finally zero

copy techniques for optimizing packet processing.

4.1.1 Protocol Properties

Like traditional Ethernet, Gigabit Ethernet was designed for a connectionless delivery

service based on the IEEE 802.3 protocol. From application point of view, the difference

between fast Ethernet and Gigabit Ethernet is only a matter of speed. The communication

scheme and protocol stack remain the same for different Ethernet technologies. On top of

the Ethernet scheme, TCP/IP protocols tend to be deployed to support data

communication. Within the TCP/IP stack, the UDP protocol is connectionless and

unreliable; on the other hand, the connection-oriented TCP communication provides

reliable data delivery.

To support fair and reliable communication, TCP introduces flow control and congestion

control mechanisms. The goal of flow control is to balance the sender’s transfer rate

50

against the receiver’s data accepting ability. In this case, a sliding window is used to

control the transmission rate. The window size is determined by the “advertised window”

field in the receiver’s acknowledgement (ACK) packets, where the receiver tells the

sender how much data it can still accept. If the receiver’s buffer is full, or its system is

too busy to deal with more data at the moment, it acknowledges the sender with a

window size of zero (close window).

The original TCP specification (RFC793) only supported a 16-bit window size, or 64 KB

limit. This value, however, is not large enough for some circumstances. RFC 1323 (TCP

Extensions for High Performance) defines a window scaling extension to solve this

problem, where the Window Scale Option is used to calculate a 32-bit value in the 16-bit

window field of the TCP header. This improvement supports up to a 4 GB TCP window

size.

Congestion control tries to balance the sender against the network by trying to limit the

sender’s transmission speed to match the network’s capacity. It introduces a second cwnd

window (congestion window) for the sender. The idea is to observe data loss during

transmissions. If there is no loss (all packets are acknowledged in a specific time interval),

the congestion window increases, allowing the sending speed to increase as well;

otherwise the congestion window is reduced. Generally, four types of mechanisms are

used for TCP congestion control: slow start (cwnd starts from 1 and then increases

exponentially), congestion avoidance (cwnd increases slowly by 1 after a threshold), and

fast retransmit and fast recovery (resend loss packets depending on the retransmission

timeout value (RTO) and duplicate ACKs, and halves the value of threshold). Notice that

all kinds of data loss and unexpected delays of packets could result in the reduction of the

congestion window, although the real reason may not be network congestion.

In TCP communications, the sender will not allow a stream of in-flight data greater than

the minimum of the sliding window and the congestion window at any time. This can be

considered a bottleneck of the network outside the sending machine. People often refer to

this minimum window as the TCP control window, or simply the TCP window. This TCP

window size determines how many bytes a sender is allowed to send out while waiting

51

for acknowledgments from the receiver. Therefore, the TCP sending rate is roughly equal

to Window-size/RTT.

To prevent tiny packet congestion, the Nagle algorithm (RFC896) is also implemented in

most TCP/IP implementations. The Nagle algorithm will delay sending a small block of

data (waiting for more data to send together) when the outstanding window

(unacknowledged packets) is relatively large. The Nagle algorithm can reduce a lot of

overhead when the application produces many small packets; such as in X window

systems, but it can have a negative effect on benchmarking, especially for network

latency tests. In many TCP/IP implementations, the TCP_NODELAY option can be used

to turn off the Nagle algorithm.

In Linux systems, there is usually an extra TCP_CORK option (the opposite of

TCP_NODELAY) to avoid delays by small packets in bulk data transfers. The idea

behind TCP_CORK is to have small packets padded with bulk data and send them

immediately. The partial frame will be pending to be “corked” (padded) for a while. An

example of using TCP_CORK is for Web servers, sending the header and the body of

HTTP response together.

TCP transmission control can have a negative impact on performance; however, it is

necessary to prevent a congestive collapse in a shared network. In order to improve TCP

performance, many suggestions and extensions have been proposed over the past decade.

Some have been accepted as standards and implemented in many operating systems, such

as TCP SACK [75] and TCP Reno [73][74]. Other proposals are still under investigation.

Two new TCP proposals are of interest to those who working with high performance

networks: HighSpeed TCP (RFC 3649) [59][86] and Fast TCP [58].

In Gigabit Ethernet, the possibility of data loss is typically low, and TCP congestion

control mechanisms can result in lower throughput and higher RTT. UDP does not

include any transmission control as TCP does; thus, it tends to have less overhead for

communication. So, in theory, UDP communication statistics should be closer to the

actual network characteristics than other protocols. On the other hand, MPI

communications can have more protocol overhead than TCP, since MPI has its own

synchronization, timing, and delay detecting mechanisms on top of TCP.

52

4.1.2 Interrupts Coalescence and Jumbo Frame Size

Gigabit Ethernet switches only need to retrieve the Ethernet header of each packet, and

then forward it out the appropriate port. This can be relatively easy to implement by

hardware (packets are only stored in SRAM, for instance). In the end hosts, however,

network processing is not that trivial. To achieve Gbit/sec level throughput, the system

has to guarantee enough bandwidth and system resources for all subsystems involved in

the handling of network traffic. Most Gigabit NICs are compatible with 4 variants of

shared PCI buses (32/64bit and 33/66MHz), but obviously a 32bit/33MHz bus incurs a

serious bottleneck for Gigabit NICs. If several Gigabit NICs are installed in one computer,

it is usually better to use a PCI-X bus that increases the clock rate to 100 or 133MHz

(PCI-X version 1) [17], with a maximum throughput of up to 8.5Gbps.

Besides hardware aspects, system software may also reduce network performance. A

Gigabit NIC is only part of the system, and a lot of work has to be done by the operating

system kernel. If the operating system cannot keep up with the pace set by the NIC,

network performance will degrade.

Motherboard
Controller

CPU 0 CPU N

GE NIC

Memory Motherboard
Controller

CPU 0 CPU N

GE NIC

Memory

GE Switch

Data

Sender Receiver

PCI/PCI-X
Bus

PCI/PCI-X
Bus

Figure 4-1 Data Flow in Gigabit Ethernet

One problem in Gigabit Ethernets is interrupt flooding. Consider the data flow in a

Gigabit Ethernet system, as shown in Figure 4-1. Suppose that both the sender and the

receiver have only one Gigabit Ethernet adaptor (NIC) installed, and that there is no

routing procedure in the IP layer. On the sender side, the system will copy data from the

53

user space to the kernel space, segment the data into small packets with protocol headers,

and then transfer them to the network interface. The NIC will raise an interrupt for each

successful frame departure, notifying the kernel to enable further processing, such as

freeing the corresponding memory. On the receiver side, when the NIC receives a frame

belonging to its MAC address, it strips the frame’s Ethernet header, places the IP packet

into a local buffer, and then generates an interrupt telling the kernel of the packet’s arrival.

The kernel copies the packet into kernel space, removes all protocol headers, reassembles

the data with proper ordering, and finally copies the data into user space.

Both incoming and outgoing frames at a NIC will incur hardware interrupts to the system

kernel. The rate of interrupts is very large for Gigabit Ethernet communication, e.g. with

a 1500-bytes packet and a 600Mbps transfer rate, that results in 600*106/(1500*8) or

50,000 packets per second. Costly context switches occur when a CPU processes the

interrupts, and then executes network routines (system and library calls), which may

possibly lead to more context switches. If the processing time for each interrupt is longer

than the interval of interrupts (20µsec in our example), the kernel will consume all CPU

resources just to service interrupts and the system will cease being able to support

productive work in user applications.

The interrupt coalescence technique, also called interrupt mitigation, is used to solve this

problem. Nowadays, most Gigabit NICs support this functionality to reduce system load.

When interrupt coalescence is enabled, a NIC will wait for a short period of time to

generate one interrupt when there is a frame arrival or departure. The idea is based on the

assumption that there may be more packets (frames) coming to a NIC, so the NIC treats a

collection of sending or receiving operations as a single event (interrupt) to the kernel,

thereby reducing the kernel’s workload. Interrupt coalescence is usually based on the

packets per interrupt rate combined with a threshold time of delay, which can be fixed or

dynamic, as shown in Figure 4-2.

54

Interrupt
generated

Interrupt
generated Maximum

delay
Reach

Packet/Int rate

Packet arrivals Packet arrivals

Time Time

Interrupt
generatedMaximum

delay

Packet arrivals

Time

Packets/interrupt
determination

Last packet maximum
delay determination

Maximum delay
determination

First
packet

First
packet

First
packet

Figure 4-2 Interrupt Coalescence Technique

Interrupt coalescence lowers system CPU usage. It does not introduce many hardships for

the sender; however, it can result in extra delay for the receiver, as interrupts are not

raised and processed immediately. Consequently, network latency measured by roundtrip

time may be inaccurate because interrupt coalescence delays the response time.

Another approach to reduce system load for packet processing is to use jumbo frames.

The standard 1526-bytes frame size (1500-bytes MTU, Preamble and Delimiter included)

was designed almost three decades ago for low speed Ethernet, with a relatively high

error rate from the physical layer connection. Although it still works well in current

networks, it is not optimized for high-speed, low-latency, and low-loss networks.

Extending Ethernet's frame size to reduce end system work load has become an attractive

option. From a study by Alteon Networks [62], jumbo frames could provide 50% more

throughput with 50% less CPU usage than standard 1500-bytes frames (Figure 4-3).

Figure 4-3 A Study of Jumbo Ethernet Frames by Alteon [62]

55

This result is not surprising. Smaller frames means higher frame rates. As we discussed

earlier, higher frame rates would result in more interrupts, and more system processing

overhead for a given data transfer size.

The jumbo frames approach to reduce system overhead for high performance networks

appears to be better than interrupt coalescence. First, it does not change any network

stacks for processing packets. Second, interrupt coalescence consumes more resources

than jumbo frames. Although a NIC could buffer several small packets for a single

interrupt, the kernel still needs to handle them one by one; on the other hand, for jumbo

frames, the kernel copes with fewer packets with larger payload which does not need to

be touched. Third, jumbo frames have less protocol overhead. One TCP packet has at

least 86-bytes in TCP/IP and Ethernet headers. This results in about a 5.64% protocol

overhead for 1526-bytes frames and 0.95% overhead for 9026-bytes frames. Finally, we

no longer need to wait for a pending interrupt that is delayed just to be sure no more are

arriving. At the same time, though, the packets are larger, so there is a slightly longer

delay in transmitting and receiving them.

Today, jumbo frames around 9KB are supported by many high-speed network devices.

Careful considerations went into selecting this number. First, research showed that

Ethernet’s CRC mechanism is able to effectively detect bit errors with frame size only

less than 11445-bytes [64]; second, 9KB can support most NFS systems that transfer data

in 8KB blocks.

Currently all switches in our SHARCNET test-bed use the standard 1500-bytes MTU.

From vendor documentation, we found that they all support 9KB jumbo frames

functionality, however. So, it is possible to use jumbo frames to improve system

performance in SHARCNET. It would not cause any problem for applications using

TCP/IP since it includes an MTU discovery mechanism.

Enabling jumbo frames in a Linux system can be done simply by using the command

(with root privileges):

/sbin/ifconfig eth0 mtu 9000

56

At the application level, for TCP applications, the user must also set the TCP_MAXSEG

option to tell the kernel the desired Maximum Segment Size (MSS), which is the size of

the MTU minus the TCP/IP header size (40-byte):

int mss = 8960;

setsockopt(socket, IPPROTO_TCP, TCP_MAXSEG, &mss, sizeof(mss));

This setting is to override the default MSS value. It is not necessary to do a similar setting

for UDP applications; because a large UDP datagram is just filled into a jumbo frame

(fragmentation in kernel still occurs if the datagram is too big to put in one frame).

Hpcbench is able to test communications using different MTU sizes. Note that the

minimum MTU in a link is always used for data communications, no matter how large

the MTU is set in application layer.

4.1.3 Data Buffers and Zero-Copy Technique

Data buffering is necessary for network communication. For example, consider a

message that is sent from one host to another host. When a system call (e.g. write()) is

invoked, the data will be first copied into the kernel space from the user space. The kernel

fragments the data into small pieces, adds protocol headers to them, and sends these

packets to the network card, which adds Ethernet headers to each packet and sends them

out over the wire or fibre. The receiver carries out similar, but inverse operations to make

the data available to the user’s application. Figure 4-4 briefly depicts how the Linux

system processes TCP/IP communication in this fashion.

Consider the buffers (queues) involved in Linux TCP/IP communication. First, the user

data is copied from process memory into a kernel buffer (socket buffer). The data in the

kernel buffer goes through TCP/IP processing and the resulting packets are put into a

queue (qdisc). At this point, these packets (in kernel space) are ready to be sent through

the network card. The NIC driver implements a ring buffer (tx_ring) to transfer the

packets into the NIC’s local buffer, and then the packets are packed into Ethernet frames

and sent to the physical media. On the other end, the NIC buffers the arriving frames,

checks their Ethernet header, and discards the frames not belonging to the local host. The

desired packets are put into the buffer ring (rx_ring). The interrupt handler takes the

packets from the buffer ring to a queue (backlog queue), and triggers the TCP/IP engine

57

to process the packets. Finally, the payload is copied from the kernel into an application

buffer provided by the application process.

User space

Kernel space

NIC local buffer
(SRAM)

Gigabit Ethernet

Sender

Device space

Application buffer

Kernel buffer
(SO_SNDBUF)

TCP/IP
processing

Interrupt
handler

Descriptor
Queue

DMA

Send_ring

User space

Kernel space

NIC local buffer
(SRAM)

Receiver

Application buffer

Kernel buffer
(SO_RCVBUF)

TCP/IP
processing

Interrupt
handler

Descriptor
Queue

DMA

Recv_ring

Free
Descriptor Device space

Write
processing Read

processing

Dequeue
If ring is not full Enqueue

1

2

3

4
5

6 1

3

4

5

6

2

Figure 4-4 Illustration of Linux TCP/IP Implementation

Behind the BSD socket system calls, Linux implements INET sockets with the sock data

structure holding connection information. Among the many data types used in the Linux

kernel, the sk_buff (/linux-src/include/linux/skbuff.h) data structure plays a key role in

networking, as the mbuf data type does in traditional BSD socket implementations. Each

sk_buff holds one packet and several other fields. In the kernel space, all packets are

constructed into a linked list of sk_buffs. On the sender side, when data are copied into

the kernel, a number of sk_buffs are created to hold the data, and each sk_buff will exist

until the corresponding packet is acknowledged by the receiver (TCP). At the receiver,

the network driver asks the kernel to allocate an sk_buff for each incoming packet, and

this sk_buff will be freed once the payload is copied into an application buffer (TCP).

More specifically, the life cycle of an sk_buff starts from the socket INET layer (sock-

>prot->sendmsg() and then sock_alloc_send_pskb()) for the sender, and the network

device driver for the receiver. All protocol handling in the kernel is based on this crucial

data structure. To prevent extra data copying, the kernel only passes the descriptor of the

sk_buff; the payload is only copied twice during the entire data transfer: between the

application and the kernel, and between the kernel and the network device. The latter is

usually done by DMA (Direct Memory Access).

58

Among these buffers, the NIC’s local buffer is not configurable. If it is full, the NIC just

discards arriving frames. The NIC’s ring buffers are simply arrays of sk_buff structures.

The configuration of ring buffers is highly device-dependent. Some Gigabit Ethernet

cards provide drivers where the ring buffer size is settable. Most Gigabit NICs, however,

have a fixed ring buffer size.

The kernel descriptor queue is tunable. For example, in the Linux kernel 2.4.x, the send

descriptor queue (tx_queue_len) is set in /kernel-src/drivers/net/net_init.c, with a default

value of 100. A user with root privilege can set a larger queue:

 /sbin/ifconfig eth0 txqueuelen 1000

This setting can be verified by /sbin/ifconfig –a command. In a high performance network,

when this queue is too small, TCP transmissions might be pending on awaiting the ACKs

if the RTT is large. A large send queue, on the other hand, could improve network

throughput for high-speed WAN communications.

The receive backlog queue (netdev_max_backlog) is a constant value of 300 defined in

/kernel-src/net/core/dev.c. Root users can also adjust this value:

/sbin/sysctl –w sys.net.core.netdev_max_backlog=3000

Or equivalently:

echo "3000" > /proc/sys/net/core/netdev_max_backlog

This setting can be verified from the virtual file /proc/sys/net/core/netdev_max_backlog.

If this queue is too small, packets may be dropped in the kernel, resulting in UDP data

loss or TCP retransmissions. A large receive queue could improve network throughput in

high-speed LAN communications.

The kernel buffer is usually referred to as the socket buffer (IP’s SO_SNDBUF and

SO_RCVBUF options). Among all of the buffers discussed, the socket buffer is the only

one that an application is able to set. Each computer has a maximum and default socket

buffer size for applications. If an application asks for a larger socket buffer than the

maximum, Linux will give it the maximum instead. The following commands set the

maximum and default send/receive socket buffers with sizes of 8MB and 64KB

respectively:

59

/sbin/sysctl -w net.core.wmem_max=8388608
/sbin/sysctl -w net.core.rmem_max=8388608
/sbin/sysctl -w net.core.wmem_default=65536
/sbin/sysctl -w net.core.rmem_default=65536

These system settings can be verified in /proc/sys/net/core directory. In our SHARCNET

test-bed, the clusters greatwhite, deeppurple, and hammerhead use the above settings,

while the cluster mako has a 128KB maximum socket buffer size and a 64KB default

socket buffer size. The actual maximum settable socket buffer size is double these values,

as we will discuss below.

It is interesting to note that, in Linux, the actual socket buffer setting is double the value

passed to setsockopt() system call. For example, with 8MB maximum system setting, we

tested the following code:

int value=8388608, size=sizeof(value);
setsockopt(socket, SOL_SOCKET, SO_SNDBUF, &value, sizeof(value));
getsockopt(socket, SOL_SOCKET, SO_SNDBUF, &vaule, &size);
printf(“Socket send buffer is set to %d \n”, value);

The result shows that the buffer size is 16777216 (16 MB). This doubling of socket

buffer sizes can be traced to the sock_setsockopt() kernel function in /linux-

src/net/core/sock.c, line 220-240 in kernel 2.4.20. In the kernel implementation, the

socket buffer takes both the payload and protocol overheads into account, making the real

buffer size smaller than what the application asked for. Considering this, kernel

developers likely intentionally doubled the kernel socket buffer size for network

applications, and set the actual usable buffer size for the application to exactly what it

asked for, but the message shown by getsockopt() system call is twice that, which is the

real memory size the kernel allocated. To make things less confusing, Hpcbench shrinks

the user’s buffer setting in half for Linux environments so that printed messages and log

files for tests are consistent with the user’s settings.

As we mentioned earlier, all TCP/IP data going through the kernel are in sk_buff

structures, and all new sk_buffs are allocated dynamically in the kernel memory space.

Consequently, a socket buffer is not a contiguous memory area when the socket is created.

A Linux socket stores the kernel buffer size values (rcvbuf and sndbuf) in the sock

structure, and uses two counters (rmem_alloc and wmem_alloc) to record the total size of

created sk_buffs for sending or receiving processes. This counter is updated if an sk-buff

60

is free when a packet is sent out into network or is copied into user space. This keeps

memory under control, and the total allocated memory for sk_buffs will never exceed the

maximum socket buffer size.

Buffer size plays a more important role in TCP than UDP because there are

retransmissions and flow and congestion controls in TCP communication, where the data

will be held in the socket buffer until they are acknowledged by the other end.

Theoretically, the optimal socket buffer size for TCP is twice the size of the Bandwidth

Delay Product (BDP). Linux systems have a mechanism to adjust TCP window size and

dynamically optimize buffer sizes during TCP communication. Three more parameters

are also available for Linux TCP socket buffer auto-tuning (tcp_mem, tcp_rmem and

tcp_wmem in /proc/net/ipv4). Generally, it is not necessary to modify these values. Linux

also has a function to cache TCP connection statistics and hold the threshold (ssthresh) of

congestion control for every link. The cached values record the congestion status for a

certain period of time. This functionality may have a negative effect for network

benchmarking. We can flush all TCP statistics cached by the following command, with

root privileges:

/sbin/sysctl –w sys.net.ipv4.route.flush=1

This ensures each connection has its own fresh TCP congestion control when a

connection is established.

Data buffering in network communications consumes time and system resources. Data

copying from the user space to the kernel space is extremely expensive for high

throughput communications. To avoid this overhead, as we mentioned in Chapter 2, some

proprietary technologies use zero-copy techniques to improve performance. In fact, this

technique can also be deployed in Gigabit Ethernet, as shown in Figure 4-5.

61

Data

User space Kernel

Data

User spaceKernel

GE
NIC

GE
NIC

DMA DMA

Gigabit Ethernet

Sender Receiver

DataData

User space Kernel

DataData

User spaceKernel

GE
NIC

GE
NIC

Copy Copy

DMA DMA
Gigabit Ethernet

Sender Receiver

Memory Memory

MemoryMemory

Figure 4-5 Illustration of Zero-copy Technique in Gigabit Ethernet

The key concept behind zero-copy for Gigabit NICs is memory mapping. In the sender,

the memory (page) of data is mapped into the kernel space. The kernel goes through the

usual TCP/IP procedures and creates protocol headers for the mapped data in its local

space, and then triggers the NIC to send the data when the process is done. The NIC

fetches the headers from the kernel space and payload from the user space using DMA

(Scatter-gather DMA), creates frames, and sends them out. The receiver has similar but

inverse operations. The real implementation for the receiver is harder than that of the

sender. This is because the payload of each packet is supposed to be directly placed into

user memory from the network card through DMA, but packet headers have to be first

analyzed by the kernel to determine where the data should go.

Obviously, zero-copy networking needs the support of both the NIC and the operating

system. Today, more and more Gigabit Ethernet adapters are able to support zero-copy

techniques. Some are even more intelligent, capable of doing extra work, such as

computing checksums in hardware and fragmentation. This trend will continue and grow

in future 10 Gigabit Ethernet adapters, where the NICs play an even more active role in

off-loading computations from the CPU and speeding up data transmissions.

Linux systems with kernel 2.4.x and later versions have a sendfile() system call that

supports a zero-copy data transfer. Hpcbench is able to test and use this function. If the

sender’s NIC is zero-copy aware, we would expect a lower system load with higher

throughput in such a case.

62

4.2 Network Communication and Kernel Interactions

In this section, we examine the interaction between the kernel and different

communication protocols. We look at UDP, TCP and MPI communication on two

different HPC systems: one based on 4-processor Alphas (hammherhead) and the other a

system based on 4-processor Intel Xeons (mako). All tests were conducted on idle

machines and repeated 10 times; the medians of results are presented for our discussion.

We select medians instead of means because some attributes of interest in our study, such

as CPU usage and workload distribution, are very different from test to test.

4.2.1 Communication on an Alpha SMP Architecture

Using Hpcbench and the system statistics that it reports, we examined UDP, TCP and

MPI communication on hammerhead, which includes 28 HP Alpha ES40 (4x833MHz

CPU) running the Linux 2.4.21 SMP operating system with an Alteon AceNIC

(64bits/33MHz PCI) Gigabit Ethernet Card installed. The Gigabit Ethernet switch in

hammerhead is Nortel’s Passport 8600 series (refer to Figure 2-15 and Table 2-1).

4.2.1.1 UDP Communication

First, we tested UDP unidirectional communication between two nodes on hammerhead.

Hpcbench was used to measure UDP throughput with its default settings: 5 seconds of

test time, repeat 10 times, 1460-bytes datagram size, and 64KB system default send/recv

socket buffer (we will examine other settings later):

[hh14 ~/hpcbench/udp]$ udptest –ch hh15 –o udp-result.txt

UDP stream test (5 Sec.) Client (hh14) Server (hh15)

Throughput (Mbps) 506.31 506.02
CPU Utilization 12% 18%
CPU load distribution (CPU 0-3) 0%, 14%, 34%, 0% 4%, 32%, 0%, 35%
Total Interrupt to kernel 41340 70048
Process time in user mode (sec) 0.06 0.02
Process time in system mode (Sec) 2.29 2.71
Process sent-datagram 216787 0
Process received-datagram 0 216787
Process sent-byte 316507592 0
Process received-byte 0 316507592

63

NIC sent-frame 217788 1
NIC sent-byte 325686720 74
NIC received-frame 9 217791
NIC received-byte 932 325686886
Interrupt generated by NIC 12596 41352

Table 4-1 UDP Unidirectional Communication Statistics

The results show that there was no UDP data loss at the application layer. In both ends,

the number of sent/received datagrams reported by Hpcbench is a bit different from the

statistics of the NIC that was traced from the kernel /proc files. This is because the

information read from /proc files could not be accurately synchronized by the process, as

we mentioned at the end of Section 3.5 in Chapter 3.

The average frame size was around 325686720/217788 (sender) ≈ 325686886/217791

(receiver) ≈ 1495-bytes in both sender and receiver, close to the expected 1502 bytes (a

1460-bytes payload + 20-bytes IP header + 8-bytes UDP header + 14-bytes Ethernet

header = 1502 bytes).

UDP communication generated a 12% CPU load for the sender (client) and an 18% CPU

load for the receiver (server). The workload was distributed to different CPUs in both

sides. We noticed that the CPU distribution varied significantly for different tests,

showing that the kernel randomly assigns the interrupts into different CPUs. The CPU

cycles were mainly devoted to system mode in both sides. This can be verified by the

process tracing: in a 5-second test, more than 50% process time was spent in system

mode in both sender and receiver, and less than 2% process time was spent in user mode

in both sides; the remaining time of was waiting for kernel processing.

The test results also show that the interrupt coalescence technique was used in UDP

communications. In the sender, the NIC generated one interrupt to the kernel when

sending out about 17 frames (217788/12596), while the receiver’s NIC generated one

interrupt for about 5 incoming packets (217791/41352).

The analysis of UDP communication with larger socket buffer will be discussed in

Section 4.2.1.4.

64

4.2.1.2 TCP Communication

We then tested TCP communication using Hpcbench with its default settings for TCP (5-

second test time, 10 repetitions, 64KB message size, default system socket buffers of

64KB for sending and 87380-bytes for receiving):

[hh14 ~/hpcbench/tcp]$ tcptest –ch hh15 –o tcp-result.txt

TCP stream test (5 Sec.) Client (hh14) Server (hh15)

Throughput (Mbps) 523.97
CPU Utilization 21% 30%
CPU load distribution (CPU 0-3) 6%, 61%, 0%, 17% 0%, 64%, 53%, 2%
Total Interrupt to kernel 67595 70326
Process time in user mode (sec) 0.01 0.02
Process time in system mode (Sec) 1.19 3.34
Message size in bytes 65536
Iteration of transferring message 4995
Data size of each sending/receiving 8192
Process total sent/recv-byte 327352320
NIC sent-frame 226076 47820
NIC sent-byte 342273337 3156122
NIC received-frame 47825 226079
NIC received-byte 3156514 342273570
Interrupt generated by NIC 47086 49835

Table 4-2 TCP Unidirectional Communication Statistics in Alpha SMP Systems
(Client and server share some fields in the table as TCP is a reliable protocol)

From the results we found that CPU1 had the most workload in both the client and the

server, and other CPUs were sharing the workload without an obvious pattern. As well,

the server’s system load was obviously greater than that of the client.

There was considerable return traffic from the server to the client in unidirectional tests.

This was due to acknowledgements (ACKs). The server sent one acknowledgement to the

client for about 4~5 incoming packets (226079/49835). This may imply the use of SACK.

The average ACK frame size was around 66-bytes (3156122/47820). Considering a 20-

bytes IP header, 20-bytes TCP header, 12-bytes timestamp (default setting in Linux) and

14-bytes Ethernet header, the ACKs were exactly blank TCP packets without payload.

The average frame size (outgoing for the client and incoming for the server) was about

342273337/226076 ≈ 342273570/226079 ≈ 1514, equal to the maximum frame size

65

defined in the IEEE 802.3 Ethernet protocol. The overhead of TCP communication in this

test is about (226076 * (20+20+12+14) + 3156514) / 327352320 ≈ 5.6%.

In this case we cannot distinguish whether the interrupts were generated by incoming or

outgoing packets (frames). Putting them together, there were about 5-6 packets per

interrupt in both the sender and the receiver.

Then we started a TCP communication session with a 1 MB socket buffer size in both

ends:

[hh14 ~/hpcbench/tcp]$ tcptest –ch hh15 –o tcp-result.txt –b 1M

TCP stream test (5 Sec.) Client (hh14) Server (hh15)

Throughput (Mbps) 573.75
CPU Utilization 23% 34%
CPU load distribution (CPU 0-3) 24%, 65%, 0%, 3% 5%, 65%, 0%, 66%
Total Interrupt to kernel 67060 68171
Process time in user mode (sec) 0.01 0.03
Process time in system mode (Sec) 1.35 3.54
Message size in bytes 65536
Iteration of transferring message 5305
Data size of each sending/receiving 8192
Process total sent/recv-byte 347668480
NIC sent-frame 240106 52015
NIC sent-byte 363515477 3432992
NIC received-frame 52023 240111
NIC received-byte 3433564 363515788
Interrupt generated by NIC 47165 48296

Table 4-3 TCP Communication with 1 MB Socket Buffer Size

From these results, we can see that with a bigger buffer size, the throughput and the

system load increase a little. From similar calculations, the overall characteristics, such as

the average frame size, average ACK packet size, SACK rate, and interrupt coalescence

rate remained the same as those of tests with default socket buffer sizes.

4.2.1.3 MPI Communication

The default MPI implementation (MPICH 1.2.5.2) in all three Alpha clusters was linked

to Quadrics’ QsNet interconnect. To test MPI communication (MPICH) over Gigabit

Ethernet, we built our own MPICH 1.2.5.2 packages based on the TCP/IP stack, defined

66

a p4 group file named conf that specifies two processes in two nodes (hh14 for the master

process and hh15 for the slave process) for the test, and then passed the –p4pg argument

to the mpirun script:

[hh14 ~/hpcbench/mpi]$mpirun –p4pg conf mpitest –c -o mpi.txt

MPI stream test (4.79 Sec.) Master process (hh14) Slave process (hh15)
Throughput (Mbps) 314.46
CPU Utilization 19% 27%
CPU load distribution (CPU 0-3) 0%, 41%, 0%, 35% 11%, 53%, 14%, 29%
Total Interrupt to kernel 64511 66540
Process time in user mode (sec) 0.04 0.19
Process time in system mode (Sec) 1.79 2.80
Data size of each sending/receiving 65536
Process total sent/recv-byte 188284928
NIC sent-frame 134885 58886
NIC sent-byte 203794436 3913620
NIC received-frame 59002 134865
NIC received-byte 3915176 203792868
Interrupt generated by NIC 44018 45436

Table 4-4 MPI Point-to-Point Communication Statistics in Alpha SMP Systems

Except for the lower throughput, the characteristics of MPI point-to-point communication

are similar to TCP communication. This was because our build MPICH over Gigabit

Ethernet was based on underlying TCP/IP communication. The lower throughput of MPI

communication was possibly due to extra communication control in our MPI

implementation, where some of this control may overlap with low-layer TCP

transmission controls. It may also have been affected by interrupt coalescence.

The average frame size of MPI communication from the master node to the slave

(secondary) node is 203794436/134885 ≈ 203792868/134865 ≈ 1511-bytes. This is

slightly less than that of the earlier TCP test. This may imply that there were some small

packets for MPI communication. The average frame size from the slave node to the

master node is 3915176/59002 ≈ 3913620/58886 ≈ 66-bytes, equal to the size of blank

TCP packets. We assume that they were also TCP acknowledgements.

67

4.2.1.4 Performance Factors of Network Communication

There are many devices and software elements involved in network communications. For

a Gigabit Ethernet environment, the main components participating in networking

include the machine‘s operating system, memory, CPU, network card (NIC), and network

switch. The bottleneck in the all of these components ultimately determines the overall

throughput.

The memory used in modern computers is usually not the bottleneck. Even PC133

SDRAM that has been widely used in the PC market for years can support up to

8000Mbps throughput (64bit). The switch is also not likely a bottleneck for a network

system in general, since data handling in a switch is much easier than in end hosts. Even

in intelligent (layer 3-7) switches, all protocol processing is done in hardware instead of

software, resulting in a very high packet per second rate.

From the experiments in the previous sections we found that the network communication

throughput in Alpha systems measured by Hpcbench with default parameters was

relatively low (less than 550 Mbps in UDP/TCP/MPI communications). What factors

lead to such a low throughput in the Alpha systems? We need to do further experiments

to discover the potential bottleneck.

We tested UDP communication with a larger socket buffer (1MB) and larger datagram

size (4KB):

[hh14 ~/hpcbench/udp]$ udptest –ch hh15 –b 1m –o udp-result1.txt
[hh14 ~/hpcbench/udp]$ udptest –ch hh15 –b 1m –l 4k –o udp-result2.txt

Client (hh14) Server (hh15)
UDP stream test (5 Sec.) Datagram

1460 Byte
Datagram

4KB
Datagram
1460 Byte

Datagram
 4KB

Throughput (Mbps) 1432.12 1599.17 650.26 588.40
CPU Utilization 18% 18% 21% 26%
CPU load distribution
(CPU 0-3)

0%, 71%,
0%, 0%

0%, 72%,
0%, 0%

22%, 45%,
18%, 0%

37%, 57%,
5%, 4%

Total Interrupt to kernel 41400 41403 70330 70186
Process time in user mode 0.14 Sec. 0.07 Sec. 0.03 Sec. 0.01 Sec.
Process time in sys mode 4.86 Sec. 4.93 Sec. 3.24 Sec. 3.19 Sec.
Process sent-datagram 613181 244061 0 0
Process received-datagram 0 0 279548 89870
Process sent-byte 895242832 999669792 0 0

68

Process received-byte 0 0 408138652 368103456
NIC sent-frame 279866 294113 6 7
NIC sent-byte 419906259 411703255 682 1008
NIC received-frame 8 11 279861 294110
NIC received-byte 512 1108 419904790 411701565
Interrupt generated by NIC 12680 12682 41635 41474

Table 4-5 UDP Unidirectional Communication with 1MB Socket Buffer

In contrast to Table 4-1, the UDP communication statistics recorded vary more widely

than that observed with a default 64KB socket buffer. Network throughput had

significantly increased 30% when the socket buffer size increased from 64KB to 1MB.

When a socket buffer is small (e.g. 64KB), it will fill more quickly, and then block the

application (benchmark) from sending more data (pending on write(), sendto() or other

system calls). Thus, the communication bottleneck is possibly due to the limitations of

small kernel socket buffers. When the socket buffer is large enough, this barrier

disappears, resulting in higher throughput.

When the socket buffer size increased to 1MB, in addition to the increase in throughput,

we observed considerable data loss during the test. We further observed that the UDP

data loss was due to the local system, and not because of the network. There was about a

54% datagram lost (1MB socket buffer, 1460-bytes datagram), before the data was sent

out of the network interface card. The results table shows no evidence that this data loss

was caused by the network or the switch (the data sent from the client’s NIC were equal

or close to the data received from the server’s NIC); instead, statistics show that the

kernel or network card dropped the UDP datagram.

With a large socket buffer, the UDP protocol processing capability in the kernel may

become a bottleneck instead. If the kernel cannot handle all of the data arriving from the

socket buffer, it may have no choice but to drop the data. Another possible bottleneck is

the network interface card. When it is not able to cope with all of the packets arriving

from the kernel, it may also have to discard some of the packets. Since the kernel is

working closely with the network card’s driver, we simply consider that kernel operations

were responsible for the data loss.

69

When the datagram size was increased to 4KB (with the same socket buffer size of 1MB),

we see that the local throughput (recorded by the UPD sender application that returns

immediately regardless if the data was sent or lost) increased too, but the network

throughput decreased, resulting in a very high data loss rate of 63% ((999669792-

368103456)/999669792). The reason for a higher local throughput with a larger datagram

size is due to a reduction in the number of system calls required, such as write() or

sendto(), for sending the same amount of data (from the application to the kernel socket

buffer). In our 5-second test examples, the application (Hpcbench) had sent 895242832

Bytes of data to the kernel in the case of 1460-bytes UDP datagrams, and this number

had increased to 999669792 for a 4KB UDP datagram size.

To determine why a larger datagram size leads to lower network throughput in our tests,

we first look at how a UDP datagram traverses the network. Each UDP datagram is

treated as a single unit during transmission in the network. When the DF flag (Do not

Fragment) is not set, the datagram will be fragmented into smaller packets to traverse the

network if its size is greater then the MTU. If the flag is set and the size exceeds the

MTU for the network, network devices will discard the datagram and return an ICMP

error message of “Fragmentation needed but DF set”. In the receiver, all fragmented

packets are reassembled back to a single datagram and then copied into the application.

The datagram is discarded by the kernel if it is not complete, even if only a single packet

belonging to it was lost. The theoretical maximum datagram size is 64KB in IPV4. In

most network environments, including hammerhead, the MTU size was 1500-bytes,

implying a maximum 1472-bytes UDP payload size for each packet (1500 - 20-bytes IP

header - 8-bytes UDP header). So, a 4KB UDP datagram would be fragmented into 3

packets to fit the 1500-bytes MTU size and then sent out over the network. In this case,

there would be some packets transmitted that did not completely fill an entire MTU,

because 4KB is not a multiple of the number 1472. This can be verified by the average

frame size of the sender: in the 1460-bytes socket buffer case, the average frame size is

419906259/279866 ≈ 1500 Byte, close to 1502 (1460 + 20-bytes IP header + 8-bytes

UDP header + 14-bytes Ethernet header); in the 4KB socket buffer case, the average

frame size is 411703255/294113 ≈ 1401 Bytes, close to 1407 (4096/3 + 42-bytes header).

70

When some small packets are transmitted, this can lead to smaller network throughput

when the other conditions remain the same. In a 5-second test, there was a total of

419904790 Bytes of data that reached the server for 1460-bytes datagrams, and this

number decreased slightly to 411701565 for 4KB datagrams.

Moreover, if some packets belonging to a large datagram are lost, all packets of this

datagram will be dropped. In our 4KB datagram example, each datagram will be sent out

in three separate packets, and all 4KB of data will be dropped in the server if any of these

three packets is lost. This situation was observed to have occurred during our tests.

Packet loss during the client’s kernel processing caused other packets to be unable to be

reassembled back to a complete datagram, even though they had successfully reached the

server. This is clearly shown in the network statistics: in the case of 1460-bytes

datagrams, the server received 419904790-bytes of data from the network interface, and

the process (application) finally retrieved back 408138652-bytes of data. This ratio is

about 97.2%, equal to 1460 (payload) / 1502 (payload+headers); while in the 4KB

datagram case, this ratio decreased to 89.4% (368103456/411701565), implying that

some data was discarded at the server. This loss can be computed by the packets and

datagrams the server received: the server received a total number of 89870 4KB

datagrams, corresponding to 269610 (89870x3) packets with a 1500-bytes MTU.

Consequently, as many as 24500 (294110-269610) packets were discarded by the

server’s kernel due to incomplete datagrams. This is another reason that explains how

larger datagrams may lead to lower network throughput when there is data loss during the

communication.

In both cases (with both datagram sizes), the main data loss is due to kernel processing.

From recorded process time information, we can also arrive at this conclusion. When the

socket buffer is large, more than 95 percent of process time was used in system mode and

the remaining was in user mode. The system was overwhelmed by UDP transmission

processing. The speed limitations of the system caused considerable data loss during this

process.

We focus on the UDP communication in our analysis because UDP communication is

connectionless, has less overhead, and is closer to raw IP packets than TCP and other

71

connection oriented protocols. There is no extra interferential control between the two

end systems in our test, so UDP communications can more closely reflect the

characteristics and behavior of the network. For throughput tests, TCP and MPI

communication never exceeded 600 Mbps, no matter how we configured test parameters.

Three issues are important to achieving maximum throughput for UDP communication:

(1) minimizing application (benchmark) overhead, (2) maximizing the kernel resource for

network processing; (3) sending full packets to fit the path MTU (payload = MTU –

protocol headers). For instance, fewer system calls have less application overhead

(condition 1); a larger socket buffer allows the kernel to spend more resources on

networking (condition 2); data transmission with a packet size slightly less than the MTU

can reduce the protocol overhead and improve the communication efficiency (condition

3). Out tests with a 1460-bytes payload and 1MB socket buffer size closely matched

these conditions, and thus the measured throughput of about 650Mbps is close to the

maximum achievable throughput of the hammerhead systems.

From our analysis, we conclude that the maximum achievable throughput of 650 Mbps is

limited by the UDP sender’s processing capabilities. The network switch may support

higher throughputs because there was no obvious data loss caused by the switch in all of

the tests according to the statistics reported by Hpcbench. To verify this, we can direct

two senders’ traffic into one receiver, to check whether the overall network throughput

measured by the server is significantly greater than 650Mbps, as shown in the below

picture.

Gigabit Ethernet Switch

UDP Stream

UDP Stream

Figure 4-6 Two Simultaneous UDP Stream into One End Station

72

We conducted this test using two machines (clients) to send UDP data to one machine

(server) simultaneously in hammerhead:

[hh14 ~/hpcbench/udp]$ udptest –ch hh15 –b 1m –t 10 –o udp-1.txt
[hh16 ~/hpcbench/udp]$ udptest –ch hh15 –b 1m –t 10 –o udp-2.txt

Clients (hh14, hh16) Server (hh15)
UDP stream test (10 Sec.) hh14 hh16 Connected to

hh14
Connected to
 hh16

Throughput (Mbps) 1433.40 1409.27 448.63 446.38
CPU Utilization 21% 21% 41% 41%
CPU load distribution
(CPU 0-3)

0%, 83%,
0%, 0%

0%, 83%,
0%, 0%

34%, 74%,
18%, 38%

34%, 74%,
18%, 38%

Total Interrupt to kernel 74535 74510 139251 139441
Process time in user mode 0.28 Sec. 0.28 Sec. 0.05 Sec. 0.04 Sec.
Process time in sys mode 9.72 Sec. 9.72 Sec. 5.83 Sec. 5.83 Sec.
Process sent-datagram 1229978 1206566 0 0
Process received-datagram 0 0 384328 382991
Process sent-byte 1795766452 1761584932 0 0
Process received-byte 0 0 561117452 559165432
NIC sent-frame 557858 556923 5 5
NIC sent-byte 837457288 836052794 726 731
NIC received-frame 13 17 767166 768186
NIC received-byte 916 1168 1151479279 1153009899
Interrupt generated by NIC 25320 25308 90046 90178

Table 4-6 Two UDP Stream Test Simultaneously on an Alpha Cluster

Two client processes were started at the same time by hand, which consequently may not

be accurately synchronized. To reduce this effect, we carried out the tests for longer

periods of time (10 seconds).

The overall throughput directed to the server was about (837457288+836052794)*8/10 ≈

1339 Mbps. The network link to the server was saturated and packets were dropped by

Gigabit Ethernet switch. The overall network throughput measured by server was about

895 Mbps (448.63+446.38). This proves our assumption that the bottleneck in the Alpha

system is in the sender machine, not the server or the switch.

All of the above experiments were executed in purely idle machines. When the systems

are under a heavy load, network performance should degrade accordingly. We selected

four busy nodes in hammerhead to test their unidirectional throughput: two were working

in user mode, and the other two were working in user space with a lower priority

73

(maximum nice value of 19 in two nodes). Tests were repeated ten times and the average

results are shown in the following table.

Test node hh10 and hh25 had 100% CPU-load in user mode (pre-test and post-test).
Test node hh15 and hh20 had 100% CPU-load in user and nice mode (pre-test and
post-test). All results were tested by Hpcbench with default settings within 10
minutes.

Protocol hh10 hh25 hh25 hh10 hh15 hh20 hh20 hh15

UDP 5.017 Mbps 5.334 Mbps 92.498 Mbps 92.872 Mbps

TCP 6.290 Mbps 7.069 Mbps 63.330 Mbps 64.694 Mbps

MPI 3.101 Mbps 3.217 Mbps 38.105 Mbps 39.273 Mbps

Table 4-7 Network Protocol Communications with Busy Machines

As we can see, network throughputs in Gigabit Ethernet dropped to less than 10 Mbps

when the system had heavy applications running. Even though the applications had been

set at a lower priority, the achievable throughputs were still much lower than normal. We

tested two relatively busy machines with 50% to 80% CPU loads, where there usually

existed at least one CPU with low usage in the 4-processor Alpha servers, and a

throughput of about 500Mbps was achieved for both UDP and TCP communication.

However, throughput decreased dramatically to less than 300Mbps when CPU load was

greater than 90%, where all CPUs had a heavy load. This shows that network

performance also depends on system’s workload, and high network throughput is only

available with sufficient system resources.

In HPC environments, computational resources tend to be controlled by some kind of a

job management system, which utilizes available CPU power as much as possible to

service submitted jobs, and usually ignores network communication requirements. We

often found in other testing that many compute nodes have 100% CPU usage in our test-

bed; most are doing computational jobs (Refer to Appendix B). In such cases, network

communication over Gigabit Ethernet will likely perform extremely poorly.

4.2.2 Communication on an Intel Xeon SMP Architecture

74

The mako cluster consists of 8 nodes of Intel Xeon 4-processor SMP systems with the

Linux 2.4.20-8smp operating system. The network components in mako include

Broadcom NetXtreme Gigabit Ethernet and an HP ProCurve 2800 switch, as shown in

Figure 2-15. In this section, we examine end-to-end protocol communications over

Gigabit Ethernet in this cluster in a similar manner as our testing with the Alpha SMP

system in the previous section.

4.2.2.1 UDP Communication

We selected two idle nodes mk1 and mk2 for UDP communication tests using Hpcbench

with its default parameters:

[mk1 ~/hpcbench/udp]$ udptest –ch mk2 -o udp.txt

UDP stream test (5 Sec.) Client (mk1) Server (mk2)
Throughput (Mbps) 956.98 956.76
CPU Utilization 13% 16%
CPU load distribution (CPU 0-3) 15%, 0%, 38%, 0% 38%, 25%, 0%, 0%
Total Interrupt to kernel 83017 410289
Process time in user mode (sec) 0.16 0.12
Process time in system mode (Sec) 2.50 1.65
Process sent-datagram 409670 0
Process received-datagram 0 409659
Process sent-byte 598116772 0
Process received-byte 0 598100712
NIC sent-frame 410672 4
NIC sent-byte 617039761 616
NIC received-frame 4 410661
NIC received-byte 616 617023195
Interrupt generated by NIC 82153 409486

Table 4-8 UDP Unidirectional Communication Statistics in Intel Xeon SMP Systems

Interestingly, the UDP throughput measured using Hpcbench with default settings could

achieve 956Mbps in mako. We found an 11-datagram loss out of about 400,000-

datagrams sent during the test at the application layer. The average frame size was about

617039761/410672 ≈ 617023195/410661 ≈ 1502-bytes in both the client and the server,

matching the number of 1460 (payload) + 8 (UDP header) + 20 (IP header) + 14

(Ethernet header) = 1502. Considering UDP/IP and Ethernet overhead (including the

preamble and the CRC trailer), the real throughput over the network was about

75

(1460+20+8+26)*956/1460 ≈ 992 Mbps, nearly the theoretical maximum throughput of a

Gigabit Ethernet.

From statistics available from the NIC, we observe there were about 5-packets per

interrupt in the sender, but no interrupt coalescence in the receiver. A lack of interrupt

coalescence in the receiver implied that there was confidence in the system being able to

handle a large number of interrupts. In our experiments, there were more than 80,000-

interrupt/sec in the receiver during the test, and the CPU utilization was only about 16%,

distributed to CPU0 and CPU1, while CPU2 and CPU3 were completely idle. CPU

performance benefited from Intel’s high CPU clock rate and other architectural

considerations. All machines in mako had 4x3GHz CPUs. On the contrary, the nodes in

hammerhead, deeppurple, and greatwhile had CPUs with a clock rate of less than 1GHz.

4.2.2.2 TCP Communication

We also started TCP communication tests using Hpcbench with its default settings:

[mk1 ~/hpcbench/tcp]$ tcpptest –ch mk2 -o tcp.txt

TCP stream test (5 Sec.) Client (mk1) Server (mk2)
Throughput (Mbps) 941.052
CPU Utilization 22% 22%
CPU load distribution (CPU 0-3) 64%, 0%, 24%, 0% 87%, 0%, 0%, 0%
Total Interrupt to kernel 201863 406477
Context switches 30561 437966
Process time in user mode (sec) 0.01 0.07
Process time in system mode (Sec) 1.23 2.76
Message size in bytes 65536
Iteration of transferring message 8971
Data size of each sending/receiving 8192
Process total sent/recv-byte 587923456
NIC sent-frame 391814 195674
NIC sent-byte 594606442 13696481
NIC received-frame 195659 391834
NIC received-byte 13696411 594652848
Interrupt generated by NIC 201256 405873

Table 4-9 TCP Unidirectional Communication Statistics in Intel Xeon SMP Systems

The table shows that the achievable TCP throughput was about 1.7 percent less than that

of UDP. The sender CPU load increased to nearly double that observed during UDP tests.

76

This may be because the TCP sender had a control window and had to work with ACK

data. From the table, we can see that the number of ACK packets was about half of the

test packets with frame size of 1369411/195659 ≈ 13696481/195674 ≈ 70-byte, 4 more

bytes than 40 (TCP/IP headers) + 12(timestamp) + 14(Ethernet header) = 66-byte. The

data frame size is around 594606442/391814 ≈ 594652848/391834 ≈ 1518-byte, 4 more

bytes than 1500 (MTU) + 14 (Ethernet header) = 1514-byte. It is possible that the NIC

driver on mako machines takes the 4-bytes CRC for Ethernet frames into account.

4.2.2.3 MPI Communication

The default MPI implementations (MPICH and LAM/MPI) in the Intel Xeon cluster

(mako) were all linked to Myrinet. Once again, to test MPI communication (MPICH)

over Gigabit Ethernet, we built our own MPICH 1.2.5.2 (the same as that of Alpha

systems) packages based on TCP/IP stack, and defined a p4 group file named conf that

specifies two processes in two nodes (mk1 for the master process and mk2 for the slave

process) for the test. We then tested MPI communication (MPICH) with Hpcbench’s

default settings:

[mk1 ~/hpcbench/mpi]$ mpirun –p4pg conf mpitest –c -o mpi.txt

MPI stream test (4.97 Sec.) Master process (mk1) Slave process (mk2)
Throughput (Mbps) 932.055
CPU Utilization 19% 24%
CPU load distribution (CPU 0-3) 76%, 0%, 0%, 0% 97%, 0%, 0%, 0%
Total Interrupt to kernel 190124 399308
Context Switches 73351 120122
Process time in user mode (sec) 0.10 0.39
Process time in system mode (Sec) 2.81 3.96
Data size of each sending/receiving 65536
Iteration of transferring message 8840
Process total sent/recv-byte 579338240
NIC sent-frame 396894 185949
NIC sent-byte 592235616 13039878
NIC received-frame 185912 396974
NIC received-byte 13038020 592333662
Interrupt generated by NIC 189517 44828

Table 4-10 MPI Point-to-Point Communication Statistics in Intel Xeon SMP
Systems

77

We can see there are many results similar to those observed in TCP communication. The

throughput was slightly less than TCP’s, while more system and user time was spent. As

with TCP, the return traffic in MPI communication (mk2 to mk1) had an average frame

size of 70-bytes, and the average frame size from the client (mk1) to the server (mk2)

was about 1518-bytes; both of them are equal to TCP’s. This is natural since our MPICH

implementation is based on underlying TCP communication. One difference between

MPI communication and TCP communication is that only a single CPU, CPU0,

participated in MPI communication.

4.2.2.4 Performance Factors of Network Communication

To examine the impact of different parameters, as on the Alpha systems, we tested UDP

communication with a larger socket buffer (256KB, the maximum in mako) and a larger

datagram size (4KB) in the Intel Xeon cluster:

[mk1 ~/hpcbench/udp]$ udptest –ch mk2 –b 256k –o udp-result1.txt
[mk1 ~/hpcbench/udp]$ udptest –ch mk2 –b 256k –l 4k –o udp-result2.txt

Client (mk1) Server (mk2)
UDP stream test (5 Sec.) Datagram

1460 Byte
Datagram

4KB
Datagram
1460 Byte

Datagram
 4KB

Throughput (Mbps) 956.95 957.65 956.62 957.02
CPU Utilization 12% 18% 20% 16%
CPU load distribution
(CPU 0-3)

12%, 0%,
36%, 0%

0%, 72%,
0%, 0%

50%, 0%,
30%, 0%

61%, 0%,
0%, 2%

Total Interrupt to kernel 83092 88735 409997 438716
Process time in user mode 0.13 Sec. 0.10 Sec. 0.08 Sec. 0.04 Sec.
Process time in sys mode 2.38 Sec. 2.89 Sec. 2.04 Sec. 1.65 Sec.
Process sent-datagram 409656 146127 0 0
Process received-datagram 0 0 409645 146127
Process sent-byte 598096332 598532128 0 0
Process received-byte 0 0 598080272 598532128
NIC sent-frame 410658 439389 4 4
NIC sent-byte 617018677 616442599 613 608
NIC received-frame 4 7 410647 439387
NIC received-byte 613 811 617002110 616442125
Interrupt generated by NIC 82124 87759 409872 437882

Table 4-11 UDP Unidirectional Communication with 1MB Socket Buffer

78

Results show that network throughput does not change dramatically, which is as we

expected, since the measured throughput with the default socket buffer size had already

been very close to the theoretical bandwidth of Gigabit Ethernet. However, the local

throughput almost remained unchanged in all cases with different socket buffers and

datagram sizes. This is totally different from how the Alpha system behaved, where the

local throughput could be much higher than the network throughput and a large number

of UDP datagrams were dropped in the kernel for such cases. This difference may come

from the network drivers of the two network interface cards, since the Linux kernel of

these two systems (Linux 2.4.21 SMP in Alpha and Linux 2.4.20 SMP in Intel) was not

significantly different. Another reason may be due to the New Application Program

Interface (NAPI).

Since kernel 2.4.20, Linux implemented a NAPI for network devices. NAPI deploys a

new interrupt mitigation mechanism that combines hardware and software interrupts, and

polling techniques. Some experiments and research show that the NAPI was able to

efficiently improve network performance and lower system load for network subsystems.

NAPI is compatible with legacy NIC drivers, but the new functionality is disabled in this

case. All drivers for network interface cards have to be rewritten to support the NAPI

functionality. We noticed that the Broadcom Tigon3 Gigabit Ethernet cards were used in

the mako Intel system, whose driver (/Linux-kernel/driver/net/tg3.c) supported the NAPI,

while NICs in the Alpha systems did not support NAPI. It is possible that the new

features of NAPI result in the excellent network performance in the Intel Xeon system,

and lead to different interactions between the kernel and network interface cards. Or both

faster CPU and NAPI in the Intel system contribute to the better performance.

The IEEE 802.3x standard specifies the transmission flow control between the sender

machine and network devices, such as switches, to prevent the sender from flooding the

network. This frame based flow control is independent of TCP’s flow controls, and is

only effective in layer 2. The sender’s network interface card and its driver should follow

this standard, and the sender will never generate data traffic greater than the bandwidth of

the (Gigabit) Ethernet. Thus the 1Gbps data rate is the maximum throughput for a sender

machine in a Gigabit Ethernet environment. Inside the sender, different drivers of

network cards can have a different impact on the Linux kernel. In Alpha systems, the

79

NIC did not block the sender from sending, even when the data transfer rate was greater

than the throughput that the NIC could support (some data was discarded by the NIC to

resolve this issue). Consequently, the kernel and the application may not be aware of the

underlying NIC’s maximum throughput, which is determined by the NIC itself and

Ethernet protocol limits as well, so the local throughput reported by application was

much higher than the 1 Gbps. On the other hand, in the Intel Xeon system, the Tigon3’s

driver seemed to block the kernel from sending when the data rate exceeded Gigabit

Ethernet’s bandwidth. In this case, no matter how fast the system is, the local throughput

measured by the application is constrained by the NIC’s transmission limit, which will

never pass the bandwidth of Gigabit Ethernet.

We also tested the case of two UDP sessions to a single end system in the Intel Xeon

system:

[mk1 ~/hpcbench/udp]$ udptest –ch mk2 –o udp-1.txt –t 10
[mk3 ~/hpcbench/udp]$ udptest –ch mk2 –o udp-2.txt –t 10

Clients (mk1, mk3) Server (mk2)
UDP stream test (10 Sec.) mk1 mk3 Connected to

mk1
Connected to
 mk2

Throughput (Mbps) 956.01. 956.83 498.11 488.15
CPU Utilization 15% 21% 22% 22%
CPU load distribution
(CPU 0-3)

28%, 0%,
0%, 30%

0%, 83%,
0%, 0%

63%, 24%,
0%, 0%

63%, 25%,
0%, 0%

Total Interrupt to kernel 165629 165775 844080 844774
Process time in user mode 0.27 Sec. 0.25 Sec. 0.14 Sec. 0.12 Sec.
Process time in sys mode 4.37 Sec. 4.35 Sec. 2.01 Sec. 1.96 Sec.
Process sent-datagram 818496 819207 0 0
Process received-datagram 0 0 426516 418020
Process sent-byte 1195002732 1196040792 0 0
Process received-byte 0 0 622711932 610307772
NIC sent-frame 819505 820210 13 15
NIC sent-byte 1232732395 1233802649 1742 2147
NIC received-frame 11 6 857163 846368
NIC received-byte 1466 759 1288283755 1272012684
Interrupt generated by NIC 163952 164108 842673 843381

Table 4-12 Two UDP Stream Test Simultaneously on the Intel Xeon Cluster

There was a slight time drift for the two processes because they were simultaneously

started by hand. In a 10-second test, the overall throughput sending to the server was

80

about (1232732395+1233802649)*8/10 ≈ 1973 Mbps. Only about half of the packets

were received by the server (1288283755 and 1272012684, reported by the server’s two

processes respectively), and the rest were dropped by the Gigabit Ethernet switch. The

overall network throughput measured by the server was about 986 Mbps (498+488). The

system load in both the client and the server were similar to what was observed with a

single communication session.

4.2.3 Summary and Comparison

From the experiments, we clearly see that the systems based on Intel Xeon Architecture

performed much better than the systems based on the Alpha Architecture, specifically,

with lower system load and higher throughputs. The interrupts coalescence technique

(reception) was used in the Alpha system but not in the Intel Xeon system. So we also

expect that the network response in the Intel Xeon system is faster than in the Alpha

system.

From the analysis of UDP communication with larger socket buffer size and datagram

size, we can conclude that in the Alpha system, the sender was the bottleneck during the

communication, and there was significant data loss with large socket buffer because the

UDP sender was not fast enough to process the data and discarded it instead. In contrast,

there was no an obvious bottleneck in the Intel Xeon system, where all UDP, TCP, and

MPI communication could reach a very high throughput close to the limits of Gigabit

Ethernet’s bandwidth.

Network communication consumes considerable system resources, especially CPU cycles.

High network throughput introduces a large number of interrupts into the system. When

back-end machines were extremely busy (with a 100% CPU load), the network

performance could significantly degrade, and the real throughput in this case could drop

to 1%, as compared to the measurement of idle machines in the Alpha clusters.

4.3 Blocking and Non-blocking Communication

Socket communication is blocking by default on most Unix platforms. Sometimes,

however, we need non-blocking I/O for multiplexed communications. In this section, we

81

have a brief analysis of these two communication models, and test their throughput in the

Intel Xeon system and the Alpha system.

For blocking socket receiving operations, the system waits for incoming data from the

network; when packets arrive, the system copies the data into a kernel buffer, processes

the protocol operations, and then copies the payload into an application buffer. During

the waiting and processing, the application is blocked waiting for the input system call to

complete, and the invocation returns when data is copied into the application buffer.

For blocking socket sending operations, the application copies data from the user space

into the kernel socket buffer and then returns the size of how much the data had been

copied. When the kernel buffer is full, in TCP communications, the process is put to sleep

until the socket buffer is available. For UDP communications, the operations may differ

between different operating systems, where the kernel may flush the socket buffer, drop

the datagram, or wait like TCP does. The traditional BSD socket implementation does not

really have a UDP send socket buffer, but only specifies the maximum datagram size that

can be written into a socket. Each datagram is just passed on to the next stack, and it may

be lost if the lower layer processing is not fast enough to keep up with the rate of creation

of UDP datagrams in the socket layer. In Linux, UDP sending system calls may block if

the socket send buffer is full (no room for sk_buff allocation), as was the case in UDP

communication with a 64KB default socket buffer in the Alpha system we discussed in

Section 4.2.1.4.

In Unix platforms, for non-blocking socket communication, all sending and receiving

system calls, such as write(), sendto(), read(), recvfrom(), and so on will return

immediately, even if there is no successful data transfer between the application and the

kernel.

Our previous experiments and discussions were based on blocking communications. To

compare the differences, we conducted additional experiments on the Alpha and Intel

Xeon systems. The results are listed in Table 4-13.

Experiments showed that, on both Intel and Alpha clusters, unidirectional throughputs

were almost the same for blocking and non-blocking TCP and MPI communications,

although non-blocking communications had a higher CPU load. These results are not

82

surprising. Although blocking and non-blocking applications have different interactions

with the kernel, the underlying TCP/IP stacks control network communication, and the

achievable throughput is determined by the network itself and the kernel networking

implementation. The different CPU loads came from the application level. For non-

blocking throughput tests, Hpcbench kept sending and reading data (system calls) until

the condition (e.g. test time or transferred data) was satisfied. Since each sending or

receiving invocation returned immediately for non-blocking I/O, the total number of

system calls was much higher than that of blocking communication for the same amount

of data transferred, even although select() was used to access the ready network handles

or descriptors (select() itself is also an expensive system call.)

Experiments conducted on two idle nodes on the Alpha cluster (greatwhite) and the
Intel Cluster (mako), with 64KB message size and system default socket buffer. Means
of 10 repetitions.

Protocol Test Mode Throughput
(Mbps)

Sender CPU
load

Receiver CPU
load

 Intel Alpha Intel Alpha Intel Alpha

Unidirectional
Blocking 941.5 519.8 22% 21% 22% 29%

Unidirectional
Non-blocking 941.5 517.5 38% 38% 34% 37%

Bidirectional
Blocking (ping-pong) 854.9 422.3 22% 21% 22% 21%

TCP

Bidirectional
Non-blocking 1827.8 721.7 47% 39% 45% 39%

Unidirectional
Blocking 932.3 312.2 20% 20% 24% 27%

Unidirectional
Non-blocking 932.1 311.8 24% 26% 37% 32%

Bidirectional
Blocking (ping-pong) 796.6 287.1 26% 26% 26% 23%

MPI

Bidirectional
Non-blocking 960.8 316.5 31% 34% 35% 37%

UDP Bidirectional
Multiplexing I/O 1867.2 775.6 34% 27% 32% 27%

Table 4-13 Blocking vs. Non-blocking Communication

In contrast, TCP bidirectional throughputs varied significantly from blocking to non-

blocking communications, because both ends participated in data sending and receiving.

83

On the Intel cluster, the non-blocking TCP communication throughput was almost double

that of blocking communication, implying that the network system worked well in full-

duplex mode. This can also be verified by UDP bidirectional tests. On the Alpha cluster,

the bidirectional non-blocking TCP throughput increased about 40% over the blocking

communication.

MPI communications, however, did not show such a radical change. This may because of

an inefficient MPI implementation of MPICH1.2.5.2 for non-blocking communication, or

it is not well tuned for the system. The MPICH (linked to TCP/IP stack) in both systems

was compiled by gcc and was installed with default settings. In next chapter, we will see

that MPICH-GM over Myrinet performs much better in the same system, and that MPI

non-blocking bidirectional throughput is almost the double of its unidirectional

throughput over Myrinet.

4.4 UDP and TCP Throughput

In this section, we present results of analyzing UDP and TCP throughput for inter-cluster

and intro-cluster communication with different parameters. MPI communication

throughput was not discussed because cross-cluster MPI communication was not

available (the inner nodes did not support ssh or rsh services for remote clusters). We

only focus on blocking, unidirectional stream experiments, because they directly show

the network behavior with less benchmark overhead and other effects. Our experiments

include both intra-cluster and inter-cluster communications in our test-bed. Since the

routing settings in the Intel Xeon system (mako) can only route to one Alpha cluster

(hammerhead), we only tested the other three Alpha clusters, greatwhite, deepurple, and

hammerhead. For intro-cluster tests, we did experiments in two idle nodes in greatwhite.

For inter-cluster tests, we examined the communication between greatwhite and

deeppurple, which was connected via optical fibre (1KM distance); communication

between greatwhite and hammerhead with long distance optical fibre link (150KM) was

also tested. Note all these three clusters used the same kind of network devices (Alteon

AceNIC, HP Passport 8600 switch) and software (Linux 2.4.21).

84

4.4.1 UDP Communication

We have discussed some issues related to UDP communication throughput in Section

4.2.3.4. We conduct further experiments in this section to determine the maximum

achievable throughput in our test-bed associated with socket buffer size, datagram size,

and different connections. We chose 1KB, 1460-byte, and 4KB datagrams for our UDP

tests, with four different socket buffer sizes: 10KB, 100KB, 1MB, and 10MB. Table 4-17

shows the averages (means) of test results.

Unidirectional UDP throughput test inside and between greatwhite, deeppurple and
hammerhead (Mbps). Mean of ten replications.

 Socket buffer Datagram

(Byte) Link
10KB 100KB 1MB 10MB

gw gw 165.11 485.22 575.30 574.79

gw dp 162.27 471.38 556.33 559.54

1024

gw hh 162.31 459.07 557.15 568.03

gw gw 177.75 557.43 649.83 647.75

gw dp 177.68 541.88 628.19 630.91

1460

gw hh 177.59 539.45 636.77 638.83

gw gw 147.64 549.46 586.02 583.32

gw dp 146.55 540.11 539.13 541.22

4KB

gw hh 147.30 536.34 538.54 537.49

gw gw 567.09 1.15 1.13

gw dp 564.46 1.16 1.13

40KB

gw hh 565.78 1.15 1.14

Table 4-14 Intro/Inter-cluster UDP Communication Throughput

From the results, we have several observations. First, the throughput increased when the

datagram size increased from 1KB to 1460-byte, but it dropped when the datagram size

increased from 1460-bytes to 4KB; when datagram size increased to 40KB and the socket

buffer size was large (1MB and 10MB), the network throughput decreased to be almost

85

negligible. Second, throughput increased when socket buffer size increased, but remained

unchanged for larger socket buffer sizes once it was large enough. Third, the throughput

varied a bit for different links, but the difference was not significant.

To explain the first case, we look at the packet size for the different datagrams. The MTU

size in our test-bed was 1500-byte, implying the maximum 1472-bytes UDP payload for

each packet. When datagram size increased from 1024-bytes to 1460-byte, the total

transmitted packets became less for the same amount of data transferred and the system

overhead was reduced, resulting in higher throughput. Throughput decreased when

datagram size increased from 1460-bytes to 4KB As we discussed in Section 4.2.2.4, two

reasons could explain this. The 4KB datagram had to be fragmented into 3 packets to fit

the MTU size before transferring in the network, resulting in some smaller packets

requiring transmission.

Furthermore, the whole datagram would be discarded if there was a single packet loss, i.e.

one packet (less than 1473-byte) lost would lead to 4096 bytes of data lost. When

datagram size increased to 40KB, the situation became worse. One datagram was

separated into at least 28 packets, and the total 40KB of data would lost if any of these 28

packets were lost. When the socket buffer size was not too large, 100KB in our example,

the bottleneck was the socket buffer itself (the application was blocked from sending

when the socket buffer was full), so there was not much data loss during kernel

processing and the network throughput was expectedly high. However, when the socket

buffer was large enough, 1MB and 10MB in our case, the socket buffer limit was

eliminated, and the UDP data was randomly dropped when the data transferring from the

application exceeded the kernel’s (or NIC’s) capabilities. When data loss caused by the

sender itself was considerable, there were few complete datagrams that could be

reassembled back in the server. The system log files for these tests verify our assumption.

We found that the actual network throughput measured by the server’s NIC was greater

than 500 Mbps for both cases (1MB and 10MB socket buffers for 40KB datagrams), but

the application in the server only reported a few of datagrams actually received. Similar

test conducted in the Intel Xeon system did not show such a behavior and the throughput

remained around 950 Mbps when both the socket buffer size and datagram size were

large (Section 4.2.2.4).

86

Without considering the effects of data loss, the kernel was able to process more packets

in one round with larger socket buffers, so the application overhead of the sending

process was reduced, and the throughput could increase with a larger socket buffer in

general. When the maximum throughput was reached, larger socket buffers were useless.

We can see this trend from the results. The throughput increased dramatically with buffer

size increasing from 10KB to 100KB, and there was relatively little change when socket

buffer size increased from 100KB to 1MB, and from 1MB to 10MB as well.

The results table shows that the maximum UDP throughput was about 630~650 Mbps for

both intro-cluster and inter-cluster communication, which was measured in the case of a

1460-bytes datagram size with a large socket buffer size (1MB and 10MB). Similar

throughputs between inter-cluster and intro-cluster UDP communication shows that the

fibre optic network was able to provide sufficient bandwidth for Gigabit Ethernet

communications over long distance.

4.4.2 TCP Communication

For TCP throughput tests, we chose 10KB, 100KB, 1MB, and 10MB socket buffer sizes

with three different message sizes: 100KB, 1MB ,and 10MB. Tests were conducted in the

same way as the UDP tests. Table 4-18 shows the test results.

Unidirectional TCP throughput test inside and between greatwhite, deeppurple and
hammerhead (Mbps). Means of ten replications.

 Socket buffer
Message Size Link

10KB 100KB 1MB 10MB

gw gw 108.34 513.86 568.13 587.71

gw dp 88.79 495.32 565.79 572.33

10K

gw hh 12.30 152.04 527.51 535.40

gw gw 119.85 515.47 574.22 589.43

gw dp 98.41 504.30 570.44 573.27

100K

gw hh 13.82 157.65 541.89 549.20

 gw gw 117.27 510.82 573.15 590.54

87

gw dp 98.22 504.41 567.08 567.18 10MB

gw hh 13.85 155.33 534.67 550.14

Table 4-15 Intro/Inter-cluster TCP Communication Performance

In contrast to UDP, TCP throughput dropped significantly for cross-cluster

communication when the socket buffer size was small, especially in long distance

communication between greatwhite and hammerhead: with a 10KB socket buffer, UDP

could achieve more than 140 Mbps throughput in any datagram size, while TCP

throughput was less than 14 Mbps for all message sizes. This is likely due to TCP’s flow

and congestion control. As we pointed out in Section 4.1.1, the data sending process is

controlled by the TCP window. To guarantee reliable delivery of data, the TCP active

window shrinks during sending, and no more data will be sent when the TCP window

closes. So the theoretical maximum throughput is window-size/RTT-time if there is

enough bandwidth for the data transfer. In our example, the network RTT time between

greatwhite and hammerhead was about 2.9ms (refer to Section 4.6), the maximum

throughput for a 10KB socket buffer (actual usable buffer is only 5KB in Linux) is about

5*1024*8/0.0029 ≈ 14.12 Mbps, agreeable with our test results. For 100KB socket buffer,

this value is about 5*1024*1024*8/0.0029 ≈ 144.63, also close to the results observed.

For a “long fat pipe” link, the optimal buffer size setting should be at least twice of

Bandwidth Delay Product (BDP), or Bandwidth*RTT (Section 4.1.1). The connection

between greatwhite and hammerhead is via DWDM optical fibre with a 1Gbps

bandwidth. To achieve the maximum throughput in this link, the socket buffer size

should be at least (1*109/0.0029)/8 = 362.5KB. For Linux and Hpcbench, this value

should be 365.2 * 2 = 725KB. Our experiments with 1M and 10MB socket buffers

satisfied this condition. In such configurations, TCP throughputs by different links varied

slightly.

We can also observe that the message size had little impact on measured throughput since

TCP is a byte-stream protocol. The achievable maximum TCP throughput in our tests

was about 590 Mbps on the cluster greatwhite, 570 Mbps between greatwhite and

deeppurle, 550 Mbps between greatwhite and hammerhead.

88

4.5 Network Communication Latency

Another important attribute of high performance networks is network latency. In our

Gigabit Ethernet environment, network latency is a measure of the time taken for a tiny

packet to travel from the sending application through the network adapter, over the

communication link, through the destination’s network adapter and into the receiving

application. So, it is affected by a number of factors: operating system, protocol overhead,

characteristics of the network devices, such as NICs and switches, network congestion,

the physical distance traveled. Most benchmarks, including Hpcbench, can only measure

the Round Trip Time (RTT) instead of the one way network latency. Figure 4-7 shows

the RTT measurement model.

KernelApplication NIC Media Switch Media NIC Kernel Application

Start timing

End timing

PCI Copy
2

PCI Copy
5

Data Copy
1

Data Copy
6

Reverse stepsSender Receiver

Data Seriazation
3

Data Seriazation
4

Figure 4-7 Round Trip Time Distribution
(Times in boxes are depending on packet length)

High throughput does not necessarily imply low latency, and vice-versa. Throughput may

be increased by adding more data channels and running packets through them in parallel.

The latency factor, however, is usually not so easy to decrease. Some applications are

very sensitive to network latency, such as interactive communication sessions. In HPC

environments, the compute nodes may need to exchange small data packets frequently. In

such a case, network latency plays a crucial role.

We tested the network latency in the Alpha systems, including the intra-cluster and inter-

cluster communications. The results are shown in Table 4-16.

ICMP RTT was tested by the default ping utility. Other RTT tests were measured by
Hpcbench. All results were the median of 10 trials with 64-bytes RTT message size.
VLAN: over private IP, directly linked by switches in SHARCNET.
Internet: communication over Internet (gw1 and hh1 include two NICs connected to
SHARCNET and Internet).

89

Protocol gw1-gw1

(Local)

gw1-gw10

(VLAN)

gw1-dp1

(VLAN)

gw1-hh1

(VLAN)

gw1-hh1

(Internet)

ICMP RTT 0 0 0 2.924 ms 3.907 ms

UDP RTT 87.15 µs 245.37 µs 322.36 µs 3.128 ms 4.792 ms

TCP RTT 102.05 µs 251.78 µs 352.88 µs 3.174 ms 4.853 ms

MPI RTT 174.58 µs 358.91 µs 367.46 µs 3.266 ms

Table 4-16 RTT Tests between Different Alpha Systems
Notice we only conducted tests on the Alpha clusters, since the routing setting in mako

cluster disabled the communication between mako and greatwhite, mako and deeppurple.

As well, the MPI communication between greatwhite and hammerhead was only

available on their master nodes (gw1 and hh1). The results showed that the roundtrip time

latency for TCP/IP communication inside the cluster of greatwhite was about 240 µsec,

about 320 µsec between greatwhite and deeppurple, and then rose to the millisecond

level between greatwhite and hammerhead. The dramatic increase was due to the long

distance (150KM) of the connection between these two clusters.

We then evaluated the network latency between two nodes inside an Alpha cluster

(hammerhead). All tests were repeated 10 times and the average results are shown in

Figure 4-8. We observe that the UDP and TCP RTTs share a similar but not smooth

shape of delay function, and the MPI RTTs were higher than those of TCP and UDP. For

tiny packets, the RTTs of TCP and UDP were about 230-250 µsec, and MPI RTTs started

from about 350 µsec. The curves for all protocols are not linearly smooth because of the

impact of interrupt coalescence.

90

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650

 0 500 1000 1500 2000 2500 3000 3500 4000

R
TT

 ti
m

e
(u

se
c)

Message size (Bytes)

Round Trip Time over Gigabit Ethernet
 hh14 <--> hh15

UDP
TCP
MPI

Figure 4-8 RTT Test over Gigabit Ethernet on an Alpha Cluster

We conducted similar experiments in the Intel Xeon cluster (mako), where there was no

interrupt coalescence for packet reception (recall Section 4.2.2). From the results (Figure

4-9) we can see that all UDP, TCP and MPI RTTs in mako were lower than 80 µsec when

the message size is less then 128-bytes, which are much lower than those of the Alpha

system. As well, all three curves are very smooth, and the measured RTTs were linear to

small message sizes. Figure 4-10 shows these slope functions. There is a clear change of

the curves around the 1500-bytes message size. This is because the data greater than

MTU size was fragmented into a second packet and then sent to the network. The slope

functions tell us the communication latency characteristics with different protocols. For

instance, consider the UDP’s RTT function: y=0.0536x+54.7, the fixed delay (54.7µsec)

is caused by protocol overhead such as the execution time for certain instructions, and the

delay associated with data size is caused by data copying and transferring in the network.

From these experiments, we can conclude that the interrupt coalescence technique

introduces extra network delay, resulting in a longer response time for network

communications. This has a negative effect for time-sensitive parallel computation,

although it helps to lower system load.

91

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

0 500 1000 1500 2000 2500 3000 3500 4000

RT
T

tim
e

(u
se

c)

Message size (Bytes)

Round Trip Time over Gigabit Ethernet
 mk1 --> mk2

UDP
TCP
MPI

Figure 4-9 RTT Test in Mako

 10
 20
 30
 40
 50
 60
 70
 80
 90
 100
 110
 120
 130
 140
 150
 160

0 200 400 600 800 1000 1200 1400

R
T
T

t
i
m
e

(
u
s
e
c
)

Message size (Bytes)

Round Trip Time over Gigabit Ethernet
 mk1 --> mk2

UDP fits y=0.0536x+54.7
TCP fits y=0.0536x+57.1
MPI fits y=0.0548x+73.0

Figure 4-10 Slope Functions of RTT vs. Message Size

Although many people likely associate high performance networks with high throughput

(bandwidth) systems, the attribute of low latency also plays a key role in optimizing

network communication performance. From our experiments, the Intel Xeon system,

which performed much better than the Alpha system, still had about a 60 µsec RTT,

which may still not satisfy some latency-sensitive parallel applications. The relatively

high latency of Gigabit Ethernets is one of the reasons that some proprietary technologies,

such as Myrinet and QsNet, are more commonly used in many extremely high

92

performance computing clusters. We will have more discussions about Myrinet and

QsNet in next chapter.

4.6 Summary

In this chapter, we studied the Gigabit Ethernet technology and its performance. We

conducted a wide variety of experiments in Alpha SMP and Intel Xeon SMP clusters, to

estimate and measure the network behavior of Gigabit Ethernet. There are several

observations and conclusions based on the results reported by Hpcbench:

• High network throughput requires plenty of system resources. Lack of system

resources, such as heavy CPU load, may lead to poor network performance.

• The interrupts coalescence technique can be used in Gigabit Ethernet adapters to

reduce system load; however, it will increase response times and lead to higher

network latency. In our test-bed, the Alpha systems enabled interrupts

coalescence, and its intra-cluster UDP/TCP roundtrip time was about 240 µsec;

the Intel Xeon system did not apply interrupts coalescence, and its UDP/TCP

roundtrip time was slightly less than 60 µsec.

• The bottleneck of a Gigabit Ethernet is usually the back end machine, not the

switch. In the Alpha system, the sender is the bottleneck. We found a lot of data

lost during the UDP end-to-end communication with sufficient socket buffer sizes,

but there was no frame loss in the network. The switch dropped the frames only

when multi-linked data delivering to one end exceeded Gigabit Ethernet’s

bandwidth.

• Without transmission controls, UDP communication has lower protocol overhead

than TCP, hence UDP communication can reflect network characteristics more

closely. The maximum achievable UDP throughput should be always greater than

maximum TCP throughput when the communication parameters are well tuned.

• MPI communication over Gigabit Ethernet is usually built on top of TCP, and

thus has more protocol overhead than UDP and TCP. In the Alpha systems, MPI

throughput was only around 300Mbps. The poor MPI performance may be

possibly due to the inefficient implementation of MPICH.

93

• A maximum UDP throughput can be achieved with three important conditions:

full MTU size frames, sufficient socket buffers, and less application overhead, i.e.

we should configure the payload for each sending close to MTU size, a large

socket buffer size such as 1MB, and minimize the system calls in an application.

• Different network cards and their drivers result in very difference network

behavior. In the Alpha clusters, for UDP communication, the sender’s local

throughput could be much higher than the actual network throughput when socket

buffer was large, and the gap between them showed that there was significant data

loss inside the kernel of sender. On the other hand, this situation never happed in

the Intel Xeon cluster; the sender’s throughput in the application layer always

matched the network throughput, and there was no UDP datagram loss in the

kernel.

• In a long distance and high bandwidth connection, sufficient socket buffers are

extremely crucial for TCP communication. To achieve maximum TCP throughput,

the socket buffer size should be at least twice of the Bandwidth Delay Product

(BDP).

• The Intel Xeon system performed much better than the Alpha system. The Intel

Xeon system (mako) could easily deliver 955 Mbps for UDP, 940 Mbps for TCP

and 930 Mbps for MPI with default system settings. On the contrast, on the Alpha

system (hammerhead), these three numbers were around 505 Mbps, 525 Mbps,

and 315 Mbps respectively. The maximum UDP throughput in Alpha system

(hammerhead) was about 650 Mbps measured by Hpcbench. One key reason that

the Intel Xeon system had better performance came to its faster CPUs that were

able to handle the heavy network processing. Better processors usually lead to

higher network throughput.

With the above analysis, we showed how Gigabit Ethernets behave in different situations,

how network communications interact with the Linux operating system, and how we can

optimize the system’s performance.

94

Chapter 5

Performance of Myrinet and Quadrics Interconnects

In our SHARCNET test-bed, besides Gigabit Ethernet, three Alpha clusters also included

a Quadrics’ QsNet interconnect, and the Intel Xeon cluster included Myrinet.

Application communication over these interconnects is done using MPI libraries provided

by vendors for parallel computing. TCP/IP communication over these two proprietary

high speed interconnects is currently unavailable (Not set up yet). In this chapter, we look

at MPI communication over these proprietary interconnects.

Since MPI implementations built for these interconnects were a high level

communication middleware, only a very few parameters can be set. For instance, the

underlying “socket” buffer is not configurable in the application layer. We tested MPI

point-to-point blocking communication using MPI_Send() and MPI_Recv(), and non-

blocking communication using MPI_Isend() and MPI_Irecv() function calls.

5.1 MPI Communication Performance

To evaluate the performance of Myrinet and QsNet in our test-bed, we tested their MPI

communication throughput and round trip time. All experiments can only be conducted

inside each cluster, since Myrinet and QsNet are tightly coupled interconnects and it is

impossible to launch an MPI communication session between two clusters over these

high speed interconnects. We selected two idle nodes in mako to test the Myrinet

communication, and two idle nodes in hammerhead to test QsNet communication for our

discussion. All MPI communication is based on the same version of MPICH (MPICH-

GM).

5.1.1 Myrinet

We have seen MPI communication over Gigabit Ethernet in mako in Section 4.2.2.3, with

throughput about 930 Mbps. We now test MPI communication over Myrinet. By default,

the mako cluster has two MPI implementations installed: MPICH-GM 1.2.5 and

95

LAM/MPI 7.0.6, and both are linked to the Myrinet interconnect. We used Hpcbench to

measure the MPICH communication throughput between mk1 and mk2 (defined in the

conf file) over Myrinet with message size increasing exponentially from 1-bytes to

128MB (227):

[mk1 ~/hpcbench/mpi]$ /usr/local/mpich-gm/bin/mpirun –p4pg conf mpitest
-e 27 –o mpi.txt

The above command tests unidirectional blocking communication. We also evaluated

non-blocking and bidirectional communication. All tests were repeated 10 times, and the

means are shown in Figure 5-1.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 1 10 100 1000 10000 100000 1e+006 1e+007 1e+008

Th
ro

ug
hp

ut
 (M

bp
s)

Message size (Bytes)

MPI point-to-point commuincation over Myrinet

Unidirctional blocking communication
Unidirectional nonblocking communication

Bidirectional blocking communication
Bidirectional non-blocking communication

Figure 5-1 MPI Point-to-Point Communication Throughput over Myrinet

Results show that Myrinet maintained a sustained unidirectional throughput around 1950

Mbps when message size was not too small. Unidirectional blocking communication

(MPI_Send/MPI_Recv) throughput had a sharp jump, reaching its maximum throughput

1976 Mbps with a small 1KB message size, and had a clear drop for message size

increasing to about 30KB. There was also a throughput slump for bidirectional non-

blocking communication when message size increased from 12MB to 16 MB. These

unstable behaviors may come from implementation details of Myrinet or the MPICH-GM

libraries.

96

The maximum bidirectional non-blocking throughput reached 3885 Mbps with a message

size of 12MB, exactly the double of the maximum unidirectional throughput, showing

that Myrinet supported full duplex communications very well.

We then tested the network latency (Round Trip Time) of Myrinet on mako using

Hpcbench (the file defines the master process mk1 and the slave process mk2):

[mk1 ~/hpcbench/mpi]$ /usr/local/mpich-gm/bin/mpirun –p4pg conf mpitest
–A 1 –o mpi-rtt-1.txt

The above command evaluates the MPI Round Trip Time, based on blocking

communication (MPI_Send/MPI_Recv), ten times with a message size of 1 Byte. We

used a shell script to scan the RTTs for different message sizes using Hpcbench. Figure

5-2 shows the means of results of ten repetitions.

Round Trip Time over Myrinet

0

20

40

60

80

100

120

0 2000 4000 6000 8000

Message SIze (Byte)

M
ic

ro
se

co
nd

Figure 5-2 MPI Point-to-Point Communication Round Trip Time over Myrinet

The MPI RTTs over Myrinet were less than 14 µsec for small size messages (1-16 Bytes),

implying less than 7 µsec of one way network latency for MPI communication. This is a

tremendous improvement when compared to the Gigabit Ethernet we studied. The curve

is linearly smooth for message size smaller than 4KB, and there is a clear drop after that.

As in TCP/IP communication, when a second packet has to be sent when the message

size is greater than the MTU size, there is a slight degradation in performance.

5.1.2 Quadrics’ QsNet

97

In our test-bed, three Alpha clusters (hammerhead, greatwhite, and deeppurple) included

both Gigabit Ethernet and QsNet interconnects. MPI communication over Gigabit

Ethernet in the Alpha systems was examined in the Section 4.2.1.3, which showed a poor

throughput around 310 Mbps. In this section, we test MPI point-to-point communication

over QsNet.

The default MPI implementation in these three clusters was MPICH 1.2.5 linked to the

QsNet interconnect. We first used Hpcbench to measure the MPICH communication

throughput between hh14 and hh15 over QsNet with the message size increasing

exponentially from 1-bytes to 128MB (227). The mpirun script is disabled on the Alpha

clusters since they use Platform’s LSF queuing system; consequently, we submit the

following to LSF:

[hh1 ~/hpcbench/mpi/]$ bsub –n 2 –extsched “nodes=2” –m “hh14 hh15” –q
short prun –n 2 –N 2 mpitest -e 27 –o mpi.txt

The above command tests unidirectional blocking communication. We also tested non-

blocking and bidirectional communication. All tests were repeated by 3 times, and the

averages are shown in Figure 5-3.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 10 100 1000 10000 100000 1e+006 1e+007 1e+008

Th
ro

ug
hp

ut
 (M

bp
s)

Message size (Bytes)

MPI point-to-point commuincation over Quadrics' QsNet

Unidirctional blocking communication
Unidirectional nonblocking communication

Bidirectional blocking communication
Bidirectional non-blocking communication

Figure 5-3 MPI Point-to-Point Communication Throughput over QsNet

The experiments showed that the maximum throughput for unidirectional communication

was sustained at about 1600 Mbps when the message size was greater than 100KB. All

curves change smoothly except the bidirectional non-blocking communication, showing

98

MPI communication over QsNet was stable. Compared to Myrinet, the bidirectional non-

blocking communication throughput on QsNet did not behave well, and was less than the

unidirectional throughput with a message size larger than 10KB. This tells us that the

QsNet in the Alpha system does not support full duplex communication very well.

Considering the bottleneck in UDP communication on the Alphas, the reason for low

bidirectional non-blocking throughput may be due to the relatively slow Alpha servers,

which might not be fast enough to handle the heavy system load introduced by the

asynchronous I/O communication.

We then evaluated the RTTs of MPI communication over QsNet using Hpcbench. The

tests were conducted between hh14 and hh15 on hammerhead, and were repeated 10

times. The averages of the results are shown in Figure 5-4.

Round Trip Time over QsNet

0

20

40

60

80

100

120

0 2000 4000 6000 8000

Message Size (Byte)

M
ic

ro
se

co
nd

Figure 5-4 MPI Point-to-Point Communication Round Trip Time over QsNet

As in Myrinet, the network latency of QsNet was very good. The MPI RTTs over QsNet

were also less than 14 µsec for tiny messages (1 Byte to 32 Byte). The curve is relatively

linear, showing that the response time of MPI communications was stable.

5.2 A Comparison to Gigabit Ethernet MPI Communication

From the experiments, we know that Myrinet and QsNet performed much better than

Gigabit Ethernet in both achievable throughput and network latency. If we look at the

statistics of Myrinet and QsNet communication (Table 5-1), we observe that the CPU

load during the tests was purely in user mode, and there were no CPU cycles from system

99

mode for both the sender and receiver. This may be due to the fact that both of these two

interconnects employ a zero copy design for message passing.

Generally speaking, both technologies use a global virtual memory concept, where

message access (passing) to remote hosts is done by pointing to a special virtual memory

area mapped into their local network interface cards (e.g. Elan in QsNet), which are able

to transfer the data from the application to the interconnect network by analyzing the

virtual memory address that the application referenced. There are no system calls

involved in the network processing (no socket created, for instance), and the function

calls for network communication are directly linked to the driver of network interface

card, without bothering the kernel to process the communication protocols. So there are

no interrupts of the kernel involved in network communication. All data exchanged

moves from user space through the NICs directly. This can lead to very high speed

communication and dramatically reduces system overhead. At the same time, since the

application runs completely in user space, each network communication session can only

be served by a single CPU in an SMP system without the load distribution support.

MPI point-to-point communications with message size of 1MB. Tests were
conducted in two idle nodes in mako (Myrinet) and hammerhead (QsNet).

Myrinet QsNet
Test mode Throughput

(Mbps)
Sender

CPU load
Receiver
CPU load

Throughput
(Mbps)

Sender
CPU load

Receiver
CPU load

Unidirectional
Blocking 1914 25% 25% 1596 25% 25%

Unidirectional
Non-blocking 1911 25% 25% 1594 25% 25%
Bidirectional

Blocking 1913 25% 25% 1596 25% 25%
Bidirectional
Non-blocking 3784 25% 25% 1307 25% 25%

Table 5-1 Statistics of MPI Communication over Myrinet and QsNet

Experimental results reflect these designs. In both Myrinet and QsNet, there is only one

CPU participating in each communication for both the sender and receiver. The results

also show that this CPU was completely occupied (100% load) during the communication,

resulting in a 25% overall CPU load for 4-processor SMP systems (Table 5-1).

100

As we have seen in the previous section, the throughput of bidirectional non-blocking

communication in Myrinet was about the double of its unidirectional non-blocking

throughput, but this did not occur with QsNet. We now can give a further explanation.

Since there is only a single CPU participating in networking for each session in these

Zero-copy technologies, the achievable throughput is more affected by speed limit of

each CPU in an SMP system. Compared to a TCP/IP communication workload that was

dynamically distributed to all four CPUs, for the high-speed and low-latency QsNet, the

relatively slow Alpha servers (4x833MHz CPUs in hammerhead) appeared to not have

enough CPU power to handle heavy bidirectional non-blocking communication.

Unlike Gigabit Ethernet’s star network topology, Myrinet and QsNet use a complex

interconnection structure, such as QsNet’s fat-tree topology. This may improve the

throughput for one node with several links at one time. In Gigabit Ethernet, no matter

how many connections exist in one host, its maximum throughput of incoming and

outgoing traffic is limited to 1 Gbps theoretically. We examined the capacity of multiple-

link communication over Myrinet in the mako cluster. Figure 5-5 shows the experiment

configuration and Table 5-2 shows the test results.

MK4
MK5

MK6

MK3

MK2

Gigabit Ethernet

Myrinet

Figure 5-5 Multilink Communication over Gigabit Ethernet and Myrinet

101

MPI stream tests with multiple links simultaneously.
Sender mk4, 1MB message size, blocking communication.
One link: mk4 mk3; Two links: mk4 mk3, mk4 mk5;
Four links: mk4 mk2, mk4 mk3, mk4 mk5, mk4 mk6;
Six links: mk4 mk2, mk4 mk3, mk4 mk5, mk4 mk6, mk4 mk7, mk4 mk8

Gigabit Ethernet Myrinet
Test mode

 Overall
throughput

Sender
CPU load

Overall
throughput

Sender
CPU load

One link 930 Mbps 20% 1915 Mbps 25%

Two links 938 Mbps 22% 1970 Mbps 50%

Four links 942 Mbps 23% 1980 Mbps 100%

Six links 940 Mbps 24% 1978 Mbps 100%

Table 5-2 Throughput of Multiple Connections on Gigabit Ethernet and Myrinet

Although the total throughput increased a bit with more connections, it never passed a

limit for both Gigabit Ethernet and Myrinet. For MPI point-to-point unidirectional

communication, this limit was about 940 Mbps for Gigabit Ethernet and around 1980

Mbps for Myrinet.

There is no kernel control (system calls) for communication over Myrinet, and the

applications were just trying to send as much data as possible to the Myrinet NIC. In our

throughput tests with Hpcbench, this consumed as much of the CPU power as possible.

When the number of connections is larger than the number of CPUs, the system will be

fully loaded and the interconnection link is saturated at the same time. This is a side

effect of zero-copy technique. For MPI communication over Gigabit Ethernet based on

TCP/IP, the CPU load did not increase dramatically. As we pointed out in Section 4.2.2.4,

the traditional interrupt-driven TCP/IP communication over Ethernet has a transmission

control mechanism between the kernel and NIC driver, and a control between the NIC

and the network switches or routers (IEEE 802.3x), thus the applications will not

overwhelm the system resources if all the applications are trying to utilize as many

network resources as possible. However, unlike some web-based services (e.g. ftp server)

where many processes extensively transferring a large amount of data simultaneously,

102

applications on HPC systems usually are computational complex, so the situation of

100% CPU usage only for the network communication does not likely occur. Myrinet and

QsNet were no doubted a better interconnect for HPCs than Gigabit Ethernet.

5.3 Summary

In this chapter, we analyzed the performance of two popular proprietary interconnects,

Myrinet and Quadrics’ QsNet. From the experimental results, both interconnects showed

a high throughput point-to-point communication and a low network latency. Myrinet in

the Intel Xeon system could deliver about 2000 Mbps unidirectional throughput and 3900

Mbps bidirectional non-blocking throughput; QsNet in the Alpha system gave about 1600

Mbps unidirectional and bidirectional throughput.

During the high throughput communication tests, there were no interrupts generated by

both Myrinet and QsNet, and CPU load was totally in user mode for network

communications. This zero-copy transmission model is much efficient than traditional

interrupt-driven communication model, resulting in lower system load and higher

network throughput.

Both Myrinet and QsNet had very low network latency. Their measured MPI Round Trip

Times for tiny messages were less than 14 µsec. This is much lower than that of Gigabit

Ethernet (about 60 µsec in the Intel Xeon system and 240 µsec in the Alpha system).

Low network latency is crucial for some time-sensitive applications. In HPC clusters, all

compute nodes use the same file system, so there are usually a lot of short messages.

High latency can degrade network performance in situations relying on small messages,

even though the network supports a very high throughput. Although Myrinet and QsNet

were deployed in SHARCNET, the NFS systems used were based on Gigabit Ethernet

and cannot take advantage of these proprietary technologies to improve performance due

to the critical issue of communication latency. A possible upgrade is to enable TCP/IP

communication over these two interconnects, and deploy the NFS servers to the domain

of Myrinet and QsNet, then we would take more advantages from the high performance

Myrinet and QsNet.

103

Chapter 6

Conclusions and Future Work

6.1 Thesis Summary

In this thesis, we presented a comprehensive study of high performance networks in HPC

clusters. The motivation for this thesis is the question of how well the network system of

commodity clusters performs, and what factors can affect this network performance. The

analyses of Gigabit Ethernet, Myrinet and QsNet, were based on experiments conducted

within SHARCNET.

Chapter 2 provided background research on HPC systems, including the history of HPC,

networking, message passing, storage deployment, and so on. Detailed descriptions of the

various components of our experimental test-bed environment were also provided.

A survey of current popular network measurement tools was presented in Chapter 3,

which led to the motivation for a new network benchmark to analyze HPC networks. To

address this need, we developed the Hpcbench tool set, and discussed its implementation

in this chapter as well. In particular, its communication model, timers, synchronization

issues, UDP measurement pitfalls, and other key issues for accurately evaluating network

performance were discussed.

The network performance of Gigabit Ethernet was investigated in Chapter 4. Theoretical

studies included TCP/IP properties, interrupts coalescence, jumbo frames, and zero-copy

techniques. Experimental research was based on UDP, TCP and MPI communication

tests on Alpha and Intel Xeon systems. The network characteristics and performance

factors for both systems were extensively analyzed. MPI communication over Myrinet

and Quadrics’ QsNet was studied in Chapter 5, with a comparison of Myrinet and Gigabit

Ethernet.

104

6.2 Contributions and Results

A comprehensive Linux-based network benchmark, Hpcbench, has been developed for

HPC environments. Hpcbench accurately measures the network latency and throughput

of high performance networks. In addition, it is capable of tracing the system information

during this testing, which is very helpful for us to understand network behavior. With

kernel information, not only can we measure this network performance, but also we can

discover the bottleneck(s) of the system, why achievable throughput is low, and why

latency is unacceptable.

We conducted a set of experiments on the SHARCNET Alpha and Intel Xeon clusters.

The results showed that system architecture, configuration, workload, drivers of network

interface cards, and other factors can significantly affect the network performance of

these cluster environments.

We analyzed the communication performance of Gigabit Ethernet in an Intel Xeon SMP

system and Alpha SMP systems. The experiments included UDP, TCP and MPI

communications. The results showed that the Intel Xeon system performed extremely

well, and provided a sustained high throughput between 930-960 Mbps for all three

communication protocols. The system load for both sender and receiver was less than

25% in all cases, while the receiver usually had a higher CPU load than the sender for the

communication of these protocols. The Intel Xeon system also showed a very good

support for UDP and TCP full duplex communication, which offered almost double the

throughput of unidirectional throughput.

The communication over Gigabit Ethernet in the Alpha systems gave a smaller

throughput in our tests, with about 650 Mbps maximum UDP throughput, and 590 Mbps

maximum TCP throughput. The MPI communication over Gigabit Ethernet in Alpha

system performed poorly, showing around 300 Mbps unidirectional throughput. With the

analysis of the kernel statistics, we found the bottleneck of UDP communication in Alpha

system was the sender machine. There was significant data loss during the UDP

communication when the socket buffers were sufficiently large. Experiments also showed

an 890 Mbps UDP throughput could be achieved by sending two UDP streams into one

end system in the cluster.

105

Gigabit Ethernet’s network latency in Intel Xeon system was also less than that the Alpha

system. The TCP/UDP Round Trip Time (RTT) on the Intel Xeon cluster started from

54-56 µsec for tiny packets, while this number increased to about 240 µsec on the Alpha

cluster. In addition, the curve function of RTT versus message size was linearly smooth

for the Intel Xeon system, but this did not hold for the Alpha system. One major reason

was that the interrupts coalescence technique was used in the Alpha system. Interrupts

mitigation could reduce the system load for networking, but introduced extra

communication delay.

The proprietary Myrinet and QsNet technologies delivered higher throughput and lower

latency than Gigabit Ethernet. For MPI (MPICH) communication, Myrinet could provide

1980 Mbps unidirectional throughput and about 3800 Mbps bidirectional non-blocking

throughput; QsNet could offer maximum 1600 Mbps unidirectional throughput but gave

less than 1500 bidirectional non-blocking throughput. This is possibly due to the

insufficient CPU power of the systems tested.

Both Myrinet and QsNet had very low network latencies of less than 14 µsec MPI

Roundtrip time for small message sizes. Myrinet and QsNet used the zero copy technique

to improve the efficiency of network communication, which eliminates the heavy

interrupts problem for traditional communication models.

High throughput communication consumed considerable system load and required

sufficient system resources. Network performance would dramatically decrease when

sufficient system resources were unavailable. Experiments showed that in the Alpha

system, the achievable network throughput for UDP, TCP and MPI communication could

shrink to less than 10Mbps in a Gigabit Ethernet environment when the system was

busily handling computational jobs.

6.3 Future Work

There are several interesting areas of further work. First, currently the tracing of MAC

layer statistics in Hpcbench only works on Gigabit Ethernet and TCP/IP-based networks.

For those proprietary technologies that are not TCP/IP-based, such as Myrinet and QsNet,

106

it is possible to trace the information of the network interface card with vendor-dependent

APIs. This extension can be part of our future work.

We would like to do further research to investigate why MPICH over Gigabit Ethernet

performs so poorly in the Alpha system, where the maximum one-way throughput was

only about 320 Mbps. Although the MPI implementations over Myrinet and QsNet were

developed and well tuned by the interconnect vendors, cross-cluster parallel computing

cannot work upon these tightly-coupled interconnects directly. The inter-cluster message

passing for MPI applications is only available through Gigabit Ethernet in the current

network architecture of SHARCNET, and many other cluster environments. In this case,

the vendor-independent MPI implementation based on TCP/IP plays a critical role for

distributed cluster computing. Understanding its performance deficiencies is therefore

very important.

We would also like to investigate the relation between network performance and

computational performance. For instance, in a Gigabit Ethernet cluster, different network

interface cards can lead to different network throughput and latency. How does the

computational ability of a HPC cluster change (such as the FLOP measurement) with

different network behavior introduced by different NICs? It is important to conduct this

kind of test so that we can have a guideline to build a commodity HPC system, although

this kind of experiment can be costly to set up.

107

References

[1] W. Richard Stevens. TCP/IP Illustrated Volume 1: The Protocols. Addison-

Wesley, 1994.

[2] G.R. Wright and W. Richard Stevens. TCP/IP Illustrated Volume 2: The

Implementation. Addison-Wesley, 1995.

[3] W. Richard Stevens. Unix Network Programming 2nd Edition Volume 1:

Networking APIs. Addison-Wesley, 1998.

[4] W. Richard Stevens. Advanced Programming in the Unix Environment. Addison-

Wesley, 1992.

[5] Daniel P. Bovet and Marco Cesati. Understanding the Linux Kernel 2nd Edition.

O'Reilly, 2002.

[6] Michael Beck, et al. Linux Kernels Internals 2nd Edition. Addison-Wesley, 1997.

[7] Moshe Bar. Linux Internals. McGraw-Hill, 2000.

[8] Raj Jain. The Art of Computer Systems Performance Analysis, John Wiley & Sons

INC, 1991.

[9] Thomas Sterling. Beowulf Cluster Computing with Linux. The MIT Press, 2002.

[10] Rajkumar Buyya. High Performance Cluster Computing: Architectures and

Systems (Volume 1). Prentice Hall PTR, 1999.

[11] Stan Openshaw and Ian Turton. High-performance computing and the art of

parallel programming. Routledge, 2000.

[12] MPI Implementation and Documentation, http://www-unix.mcs.anl.gov/mpi/.

[13] MPI Forum. http://www.mpi-forum.org.

[14] The TOP500 Supercomputers list. http://www.top500.org.

[15] 10 Gigabit Ethernet Alliance. http://www.10gea.org.

[16] InfiniBand Trade Association. http://www.infinibandta.org.

[17] The PCI Special Interest Group (SIG). http://www.pcisig.com.

[18] Fabrizio Petrini et al. The Quadrics Network (QsNet): High-Performance

Clustering Technology. IEEE Micro, January-February 2002.

[19] Quadrics’ home Page. http://www.quadrics.com.

108

[20] Brent N. Chun et al. Virtual Network Transport Protocols for Myrinet. Technical

report. UC Berkeley, 1998.

[21] Myricom’s home page. http://www.myri.com.

[22] SHARCNET home page. http://www.sharcnet.ca.

[23] Jack J. Dongarra and Piotr Luszczek and Antoine Petitet, The LINPACK

Benchmark: Past, Present, and Future, Concurrency and Computation: Practice

and Experience. 2003.

[24] T. Delaitre, et al. Publishing and Executing Parallel Legacy Code Using an OGSI

Grid Service. ICCSA (2) 2004.

[25] The Condor project. http://www.cs.wisc.edu/condor/.

[26] LSF job management system. http://www.plotform.com.

[27] Maui and Moab job management systems. http://www.supercluster.org.

[28] Portable Batch System (PBS). http://www.openpbs.org, http://www.pbspro.com.

[29] IBM SAN Redbook (Introduction to Storage Area Networks). http://publib-

b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg245470.html?Open

[30] HP SAN Design Reference Guide.

http://h18006.www1.hp.com/products/storageworks/san/documentation.html.

[31] IBM OpenSource Distributed Lock Manager project.

http://oss.software.ibm.com/dlm.

[32] PVFS file system. http://www.parl.clemson.edu/pvfs/.

[33] Redhat’s GFS project. http://sources.redhat.com/cluster/gfs/.

[34] Frank Schmuck and Roger Haskin. GPFS: A Shared-Disk File System for Large

Computing Clusters. Proceedings of the Conference on File and Storage

Technologies, 28-30 January 2002.

[35] Lustre file system. http://www.clusterfs.com.

[36] Matrix server. http://www.polyserve.com/.

[37] DataPlow’s SAN file system. http://www.dataplow.com/.

[38] Patrick khoo. Ethernet Storage Trends and Overview. Data Storage Institute.

October 2002.

[39] IP storage discussion website. http://www.iscsistorage.com.

109

[40] Ping Guan, et al. A Survey of Distributed File Systems. Technical Report.

University of California, 2000.

[41] T10 Technical Committee (information about I/O interfaces). http://www.t10.org.

[42] Coda file System. http://www.coda.cs.cmu.edu.

[43] AFS file system. http://www.openafs.org.

[44] Kevin Lai, Mary Baker. Measuring Link Bandwidths Using a Deterministic Model

of Packet Delay. Proceedings of ACM SIGCOMM 2000, August 2000.

[45] Pathchar measurement tool. ftp://ftp.ee.lbl.gov/pathchar/.

[46] Pathload and Pathrate measurement tools. http://www.pathrate.org.

[47] Ntop measurement tool. http://www.ntop.org.

[48] Nettimer measurement tool.

http://mosquitonet.stanford.edu/~laik/projects/nettimer/.

[49] Nuttcp tool. ftp://ftp.lcp.nrl.navy.mil/pub/nuttcp/.

[50] Udpmon measurement tool. http://www.hep.man.ac.uk/u/rich/net/.

[51] Netperf measurement tool. http://www.netperf.org.

[52] Iperf measurement tool. http://www.iperf.org.

[53] Netpipe measurement tool. http://www.scl.ameslab.gov/netpipe/.

[54] Tcpdump utility and packet capture library. http://www.tcpdump.org.

[55] High resolution timer project. http://sourceforge.net/projects/high-res-timers/.

[56] Web100 project. http://www.web100.org.

[57] Netlogger toolkit. http://www-didc.lbl.gov/NetLogger/.

[58] C.Jin, et al. Fast TCP: From Theory to Experiments. IEEE Communications

Magazine, Internet Technology Series, April 2003.

[59] Sally Floyd. HighSpeed TCP for large congestion windows. Internet Draft, 2002.

[60] Piyush Shivam, et al. Zero-copy OS-bypass NIC-driven Gigabit Ethernet Message

Passing, SC2001 November 2001.

[61] Christian Kurmann, et al. Speculative Defragmentation – Leading Gigabit

Ethernet to True Zero-Copy Communication. Cluster Computing 4, 2001.

[62] Alteon Networks White Paper. Extended Frame Sized for Next Generation

Ethernets. 1999.

[63] Matt Mathis’s MTU discussion. http://www.psc.edu/~mathis/MTU/.

110

[64] Raj Jain. Error Characteristics of Fiber Distributed Data Interface (FDDI). IEEE

Transactions on Communications, No. 8, August 1990.

[65] R. Hughes-Jones, et al. Performance Measurements on Gigabit Ethernet NICs and

Server Quality Motherboards. First International Workshop on Protocols for Fast

Long-Distance Networks, February 2003.

[66] DataTAG’s how to achieve Gigabit speeds with Linux.

http://datatag.web.cern.ch/datatag/howto/tcp.html.

[67] Miguel Rio, et al. A Map of the Networking Code in Linux Kernel 2.4.20.

Technical report. DataTAG, March 2004.

[68] R. Prasad, et al. Effects of Interrupt Coalescence on Network Measurements.

Proceedings of Passive and Active Measurement (PAM) Workshop, April 2004.

[69] Vern Paxson. Measurements and Analysis of End-to-End Internet Dynamics. Ph.D.

Thesis. UC Berkeley, April 1997.

[70] Roelof Jonkman. NetSpec: Philosophy, Design and Implementation. Master Thesis.

University of Kansas. 1998.

[71] John Enok Vollestad. A high performance cluster file system using SCI. Master

Thesis. University of Oslo, Autumn 2002.

[72] Jon Postel. User Datagram Protocol. RFC 768, 1980.

[73] Jon Postel. Internet Protocol. RFC 791, 1981.

[74] Jon Postel. Transmission control protocol – protocol specification. RFC 793, 1981.

[75] John Nagle. Congestion Control in IP/TCP Internetworks. RFC 896, 1984.

[76] Van Jacobson, et al. TCP Extensions for High Performance. RFC 1323, 1992.

[77] Philip Almquist. Type of Service in the Internet Protocol Suite. RFC 1349, 1992.

[78] Matt Mathis, et al. TCP Selective Acknowledgment Options. RFC 2018, 1996.

[79] W. Richard Stevens. TCP slow start, congestion avoidance, fast retransmit and

fast recovery algorithms. RFC 2001, 1997.

[80] Kathleen Nichols, et al. Definition of the Differentiated Services Field (DS Field)

in the IPv4 and IPv6 Headers. RFC 2474, 1998.

[81] Mark Allman, et al. TCP Congestion Control. RFC 2581, 1999.

[82] Sally Floyd, et al. The NewReno Modification to TCP's Fast Recovery Algorithm.

RFC 2582, 1999.

111

[83] Sally Floyd, et al. An Extension to the Selective Acknowledgement (SACK) Option

for TCP. RFC 2883, 2000.

[84] L.S. Brakmo and L.L. Peterson. TCP Vegas: End to End Congestion Avoidance on

a Global Internet. IEEE Journal on Selected Areas in Communications, Vol. 13,

No. 8, October 1995.

[85] Sally Floyd, et al. The Addition of Explicit Congestion Notification (ECN) to IP.

RFC 3168, 2001.

[86] Sally Floyd. HighSpeed TCP for Large Congestion Windows. RFC 3649, 2003.

112

 Appendix A. Hpcbench Benchmark

A.1 Overview

Hpcbench is a Linux-based network benchmark evaluating the high performance
networks such as Gigabit Ethernet, Myrinet and QsNet. Hpcbench measures the network
latency and achievable throughput between two ends. Hpcbench is able to log the kernel
information for each test, which includes the CPU and memory usage, interrupts,
swapping, paging, context switches, network cards' statistics, etc.

Hpcbench consists of three independent packages that test UDP, TCP and MPI
communications respectively. A kernel resources tracing tool "sysmon" is also included,
whose output is similar to that of vmstat, but has more information of network statistics.

Hpcbench comprises about 8000-line C and MPI code, optimized for Linux systems.
Hpcbench’s official website is: http://hpcbench.sourceforge.net, where its source code
and some test examples are freely available.

Figure A-1 shows the communication architecture of Hpcbench.

Hpcbench Hpcbench

Control Channel

Test Channel

UDPTCPMPI
Resource
Monitor Test Mode

CPU load
Memory usage
Paging
Context switch
Interrupt
NIC statistics

Datagram
Message size
Socket buffer
QoS setting
Throughput limit
Port number

MTU size
Message size
Socket buffer
QoS setting
Port number
TCP_NODELAY
TCP_CORK
(Non)Blocking

Message size
(Non)Blocking

Throughput/RTT
Test time
Repetition
Uni/Bidirectional
UDP traffic generator

Workload Generator

Figure A-1 Communication model of Hpcbench

113

http://hpcbench.sourceforge.net/

A.2 Features

A.2.1 UDP Communication Test:

• Microsecond resolution
• Roundtrip time test (UDP ping)
• Throughput test
• Unidirectional and Bidirectional test
• UDP traffic generator (can run in single mode)
• Fixed size and exponential test
• Log throughputs and process resource usage of each test
• Log system resources information of client and server (Linux only)
• Create plot configuration file for gnuplot
• Configurable message size
• Other tunable parameters:

o Port number
o Client and server's UDP socket buffer size
o Message size
o Packet (datagram) size
o Data size of each read/write
o QoS (TOS) type (Pre-defined six levels)
o Test time
o Test repetition
o Maximum throughput restriction (Unidirectional and UDP traffic

generator)

A.2.2 TCP Communication Test:

• Microsecond resolution
• Roundtrip Time test (TCP ping)
• Throughput test
• Unidirectional and Bidirectional test
• Blocking and non-blocking test
• Fixed size and exponential test
• Linux sendfile() test
• Log throughputs and process resource usage of each test
• Log system resources information of client and server (Linux only)
• Create plot configuration file for gnuplot
• Configurable message size
• Other tunable parameters:

o Port number
o Client and server's TCP socket buffer (window) size
o Message size
o Data size of each read/write
o Iteration of read/write
o MTU (MSS) setting
o TCP socket's TCP_NODELAY option setting
o TCP socket's TCP_CORK option setting
o QoS (TOS) type (Pre-defined six levels)
o Test time
o Test repetition

114

A.2.3 MPI communication Test:

• Microsecond resolution
• Roundtrip Time test (MPI ping)
• Throughput test
• Unidirectional and Bidirectional test
• Blocking and non-blocking test
• Fixed size and exponential test
• Log throughputs and process resource usage of each test
• Log system resources information of two processes (nodes) (Linux only)
• Create plot configuration file for gnuplot
• Tunable parameters:

o Message size
o Test time
o Test repetition

A.3 Hpcbench Usage and Options

Hpcbench includes four packages. Each of them can work independently. UDP and TCP
benchmarks are used in pairs, and you should start the server process before the client
process. MPI benchmark must work with a MPI implementation. All these three tools
measure end-to-end performance in a network. Sysmon is a Linux-based system resource
monitoring tool, functioning like vmstat/iostat with more information about the network
statistics. The directory structure of Hpcbench:

hpcbench/ --> Readme and Makefile
hpcbench/udp/ --> UDP measurement tool
hpcbench/tcp/ --> TCP measurement tool
hpcbench/mpi/ --> MPI measurement tool
hpcbench/sys/ --> Linux system resource monitoring tool
hpcbench/testscript/ --> Scripts to scan a set of parameters for
UDP/TCP/MPI communication

A.3.1 UDP Communication Measurement

Two executables, udpserver and udptest, will be created in the directory after
compilation. You should start the server process at first, except udptest(client) runs
as UDP traffic generator. The command line options:

UDP server usage: udpserver [options]

$ udpserver [-v] [-p port]

• [-p port] Port number for TCP listening (0 picked by system), 5678 by default.
• [-v] Verbose mode. Disable by default.

UDP client usage: udptest -h host [options]

$ udptest -h host [-vacdeiP] [-p port] [-A rtt] [-b buffer] [-B buffer] [-m msssage]
[-q qos] [-l datagram] [-d data] [-t time] [-r repeat] [-o output] [-T throughput]

115

• [-a] UDP Round Trip Time (RTT or latency) test.
• [-A rtt-size] UDP RTT (latency) test with specified message size.
• [-b buffer] Client UDP buffer size in bytes. Using system default value if not

defined.
• [-B buffer] Server UDP buffer size in bytes. The same as cleint's by default.
• [-c] CPU log option. Tracing system info during the test. Only available when

output is defined.
• [-d data-size] Data size of each read/write in bytes. The same as packet size

by default.
• [-e] Exponential test (data size of each sending increasing from 1 byte to

packet size).
• [-g] UDP traffic generator (Keep sending data to a host). Work without

server's support.
• [-h host] Hostname or IP address of UDP server. Must be specified.
• [-i] Bidirectional UDP throughput test. Default is unidirection stream test.
• [-l datagram] UDP datagram (packet) size in bytes (< udp-buffer-szie).

1460 by default.
• [-m message] Total message size in bytes. 1Mbytes by default.
• [-o output] Output file name.
• [-p port] Port number of UDP server. 5678 by default.
• [-P] Write the plot file for gnuplot. Only enable when the output is specified.
• [-q qos] Define the TOS field of IP packets. Six predefined values can be used

for this setting:
o 1: (IPTOS)-Minimize delay 2: (IPTOS)-Maximize throughput
o 3: (DiffServ)-Class1 with low drop probability 4: (DiffServ)-class1 with

high drop probability
o 5: (DiffServ)-Class4 with low drop probabiltiy 6: (DiffServ)-Class4 with

high drop probabiltiy
• [-r repeat] Repetition of tests. 10 by default.
• [-t time] Test time constraint in seconds. 5 by default.
• [-T throughput] Throughput constraint for UDP generator or throughput test.

Unlimited by default.
• [-v] Verbose mode. Disable by default.

NOTE: Input (except -T) supports the postfix of "kKmM", 1K=1024, 1M=1024x1024.
Throughput constraint option (-T): 1K=1000, 1M=1000000.

With plot option (-P), when an "output" file is specified, an "output.plot" file will also
be created for plotting. Use "gnuplot ouput.plot" to plot the data. With CPU option (-
c), when an "output" file is specified, "output.c_log" and "output.s_log" files store
the system information of client and server, respectively.

UDP Round Trip Time (latency) test is just a UDP version of "ping". RTT is too short
to be measured in HPC environments, so we repeat RTT test many times and get the
average of RTTs.

A UPD throughput test is done when both of the conditions are satisfied: message
size AND test time. So the actual size of sent message could be greater than the
message size you specify if the test time is large.

In UPD throughput tests, message size (-m option) specifies the total amount of data
to be sent. Messages are actually sent by small pieces (defined by -d option) that

116

must be smaller than datagram (packet) size. In exponential tests, the sending size
increases exponentially from 1 byte to the datagram (packet) size; while in the
fixed-size tests, the size of each sending is always the same as datagram (packet)
size. Most systems have a 64KB maximum size limit of UDP datagram (packet).

UDP traffic generator keeps sending UDP packets to a remote host that is
unnecessary running as server. Better to pick an unused port for this test. You can
specify the throughput to be sent (-T option). Be aware that this test may affect
target host's performance.

If CPU and system monitoring option (-c) is defined, both client and server's CPU and
memory usages (Maximum 8 CPUs supported for SMP systems), network interface
statistics and its interrupts to each CPU will be recorded. Currently this option is only
available for Linux system.

Examples

1. Start server process
[server] $ udpserver

2. Start client process

Example 1: [client] $ udptest -ah server
UDP Round Trip Time (latency) test.

Example 2: [client] $ udptest -h server
UDP throughput test with default set of parameters (Port: 5678, test-time: 5, test-
repeat: 10, Message-size: 1Mbytes, packet-size: 1460, send-size: 1460)

Example 3: [server] $ udpserver -p 3000
[client] $ udptest -vh server -p 3000 -b 1M -m 10m -l 20k -t 2 -r 20 -o output.txt
Repeat throughput tests by 20 times with communication port of 3000; store results
in "output.txt"; buffer-size: 1MB, message-size: 10MB, test-time: 2 Seconds,
packet-size: 20KB

Example 4: [client] $ udptest -eP -h server -b 100k -o output.txt
Exponential throughput test for buffer size of 100KB, writing output and plot file.

Example 5: [client] $ udptest -gh abc.com -T 10M -t 30
Keep sending UDP data to the target host by 10Mbps throughput for 30 seconds.

A.3.2 TCP Communication Measurement

Two executables, tcpserver and tcptest, will be created in the directory after
compiplation. You should start the server process at first. The command line options:

TCP server usage: tcpserver [options]

$ tcpserver [-v] [-p port]

117

• [-p port] Port number for TCP listening (0 picked by system), 5677 by default.
• [-v] Verbose mode. Disable by default.

TCP clinet usage: tcptest -h host [options]

$ tcptest -h host [-vanicCNP] [-p port] [-A rtt-size] [-e exponent] [-b buffer] [-B
buffer] [-q qos] [-M MSS] [-d data] [-m message] [-r repeat] [-t time] [-f sendfile]
[-I iteration] [-o output]

• [-a] Test the TCP Round Trip Time (RTT). Ignore all other options if defined.
• [-A test-size] TCP RTT test with specified message size.
• [-b buffer-size] TCP buffer (windows) size in bytes. System default if not

defined.
• [-B buffer] Server UDP buffer size in bytes. The same as cleint's by default.
• [-c] CPU log option. Tracing system information during the test. Only availabe

when output is defined.
• [-C] Turn on socket's TCP_CORK option (avoid sending partial frames).

Disable by default.
• [-d data-size] Data size of each read/write in bytes. The same as packet size

by default.
• [-e n] Exponential tests with message size increasing exponentially from 1 to

2^n.
• [-f sendfile] Sendfile test. Memory mapping is used to reduce the workload.

Disable by default.
• [-h host-name] Hostname or IP address of server. Must be specified.
• [-i] Bidirectional UDP throuhghput test. Default is unidirection stream test.
• [-I iteration] Iteration of sending/receiving for each test. Auto-determined by

default.
• [-m message-size] Message size in bytes. 65536 by default.
• [-M MSS-size] Maximum Segent Size in bytes (MTU-40 for TCP). System

default if not defined.
• [-n] Non-blocking communication. Blocking communication by default.
• [-N] Turn on socket's TCP_NODELAY option (disable Nagel algorithm). Disable

by default.
• [-o output] Output file name.
• [-p port-number] Server's port number. 5677 by default.
• [-P] Write the plot file for gnuplot. Only enable when the output is specified.
• [-q qos] Define the TOS field of IP packets. Six predefined values can be used

for this setting:
o 1: (IPTOS)-Minimize delay 2: (IPTOS)-Maximize throughput
o 3: (DiffServ)-Class1 with low drop probability 4: (DiffServ)-class1 with

high drop probability
o 5: (DiffServ)-Class4 with low drop probabiltiy 6: (DiffServ)-Class4 with

high drop probabiltiy
o [-r repeat] Repetition of tests. 10 by default.

• [-t test-time] Test time in seconds. Disable if iteration is sepcified. 5 by
default.

• [-v] Verbose mode. Disable by default.

NOTE: Input supports the postfix of "kKmM", 1k=1024, 1M=1024x1024.

118

With plot option (-P), when an "output" file is specified, an "output.plot" file will also
be created for plotting. Use "gnuplot ouput.plot" to plot the data. With CPU option (-
c), when an "output" file is specified, "output.c_log" and "output.s_log" files store
the system information of client and server, respectively.

The TCP RTT (latency) test is just a TCP version of "ping". RTT is too short to be
measured in HPC environments, so we repeat RTT test many times and get the
average of RTTs. In the TCP tests, message size (-m option) specifies the amount of
data to be sent each time.

The iteration of sending/receiving for a test time (-t option) is determined by an
evaluation test, so the actually test time could vary slightly. In exponential test,
message size increases exponentially from 1 byte to a large number (-e option). Be
aware that there is a minimum number of iteration, and the test time might be much
greater than what you specify if the message size is very large.

If CPU and system monitoring option (-c) is defined, both client and server's CPU and
memory usages (Maximum 8 CPUs supported for SMP systems), network interface
statistics and its interrupts to each CPU will be recorded. Currently this option is only
available for Linux system.

Examples

1. Start server process
[server] $ tcpserver

2. Start client process

Example 1: [client] $ tcptest -ah server
TCP Round Trip Time (RTT) test. A TCP version of ping.

Example 2: [client] $ tcptest -h server
TCP blocking stream test with default set of parameters, verbose off, no result
writing.

Example 3: [server] $ tcpserver -p 3000
[client] $ tcptest -vn -h server -p 3000 -b 100k -m 10m -t 2 -r 20 -o output.txt
Repeat non-blocking stream tests by 20 times with communication port of 3000.
Buffer size: 100K, message size: 10M, test time: 2 Seconds, store results in
"output.txt".

Example 4: [client] $ tcptest -e 20 -vh server -b 100k -o output.txt
Exponential stream test for buffer size of 100 KB with verbose mode with message
size increasing exponentially from 1 Byte to 1 MByte (2^20).

A.3.3 MPI Communication Measurement

To compile the MPI benchmark (mpi directory), you need a MPI implementation
installed, such as MPICH or LAM/MPI. And you should define the MPI compiler in the
makefile. Most MPI implementations have a script named mpicc to do this job. An
executable file mpitest will be created when compilation is finished. To run the

119

mpitest, you should run the program with another script named mpirun, or submit
the job to a high level queuing systems like RMS and LSF. For MPICH, the command
line options of mpitest:

MPI test: mpirun -np 2 mpitest [options]

$ mpirun -np 2 mpitest [-acinP] [-A size] [-e exponent] [-m message] [-o output] [-r
repeat] [-t time]

• [-a] Round Trip Time (latency) test. Disable by default.
• [-A RTT-size] Specify the message size in bytes for RTT (latency) test.
• [-c] CPU log option. Tracing system information during the test. Only

available for Linux systems.
• [-e n] Exponential tests with message size increasing exponentially from 1 to

2^n. Disable by default.
• [-i] Ping-pong (bidirectional) test. Stream (unidirectional) test by default.
• [-m message-size] Message size by bytes (1M by default). Disable in

exponential tests.
• [-n] Non-blocking communication. Blocking communication by default.
• [-o output] Write test results to a file. Disable by default.
• [-P] Plot file for gnuplot. Only enable when the output is specified. Disable by

default.
• [-r repeat] Repeat tests many times. Disable in exponential tests. 10 times by

default.
• [-t test-time] Specify test time by seconds. 5 seconds by default.

NOTE: Input supports the postfix of "kKmM". 1k=1024, 1M=1024x1024.

Examples:

Example1: $ mpirun -np 2 mpitest
Throughput stream test with default parameters.

Example2: $ mpirun -np 2 mpitest -e 20
Exponential stream (unidirectional) test, message size from 1 byte to 2^20 (1M)
bytes.

Example3: $ mpirun -np 2 mpitest -c -m 10m -Po output.txt
Throughput stream test with 10MBytes message size, write result/plot files, log
system info.

Example4: $ mpirun -np 2 mpitest -ni -m 100k -t 3 -r 10
Nonblocking ping-pong test. Message-size: 100KBytes; test-ime: 3 seconds; repeat
10 times.

Example5: $ mpirun -np 2 mpitest -a -o rtt.txt
MPI Round Trip Time (latency) test. Write the result to file "rtt.txt".

To use own machine file (MPICH):

$ mpirun -np 2 -machinefile <machine file> mpitest [options]

120

or use the p4 procgroup file (MPICH):

$ mpirun -p4pg <p4 procgroup file> mpitest [options]

There are sample machinefile and p4pg files in mpi directory. To submit your job to
queuing system such as LSF, refer to the test-mpi.lsf and test-mpi.sh scripts in
testscript directory.

A.3.4 SYSMON – Linux System Resource Monitor

Sysmon is a lightweight Linux-based system resource tracing tool. Although it's not a
benchmark, it's very helpful to trace what is happening in the kernel level during the
benchmarking. The output includes the CPU and memory usage, swapping, paging
and context switches information, interrupts kernel received, and each network
interface's statistics, which includes interrupts to kernel, packets and bytes that
received and sent in a specified interval.

Sysmon usage: sysmon [options]

$ sysmon [-bhkwW] [-i interface-name] [-r repeat] [-t test-interval] [-T test-time]

• [-b] Background (daemon) mode. Only valid when write option is defined.
• [-h] Printout this help messages.
• [-k] Kill the sysmon background process (daemon). Disable by default.
• [-w] Write all results to a file. Disable by default.
• [-W] Write statistics of each network device to separate files. Disable by

default.
• [-i interface-name] Define the network device name (e.g. eth0). Monitor all if

no interface defined.
• [-r repeat] Repetition of monitoring. 10 times by default.
• [-t test-interval] The interval (sample time) between each tracing in seconds.

2 seconds by default.
• [-T test-time] The duration of system monitoring in minutes. Valid only write

option defined.
• [-o output] Specify the output (log) filename. Implies the write option.

NOTE: Default log file has format of hostname-start-time.log if write option (-w) is
defined and output option (-o) is not defined. If separate write option (-W) is defined,
besides the overall log file "output", each network interface has its itself log file with
name like "output.eth0". This smaller log file is more readable than the lengthy
overall log file.

You can use command "/sbin/ifconfig" to check the network devices and their names
in your computer. Possible names: eth0, wlan0, elan0, etc. If your system has some
strange NIC names, you can define them with constant NETNAME in util.h. We use
the name of "loop" for loopback address.

Examples:

121

Example1: $ sysmon
Monitor all network devices. Output has a very long format if the computer has
several network cards.

Example2: $ sysmon -r 100 -t 1 -i eth0 -o net.log
Only monitor the first Ethernet card, repeat test 100 times with time interval of 1
second, write results to net.log

Example3: $ sysmon -bw -i eth0 -t 600 -T 10080
Log every 10 minutes for one week, run process in background (daemon).

122

Appendix B. Network Statistics of Clusters

We used the sysmon utility of Hpcbench to trace the network statistics over Gigabit

Ethernet in hammerhead and deeppurple for a whole week (Auguest 4th to 11th, 2004).

The statistics of hammerhead is shown in Table B-1. The results show that node hh24 had

much more data transfer than others during the one week monitoring. We traced the log

files and found there was a steep jump of data transmission in case of insufficient

memory. When the memory usage was greater than 95% and swapping occurred, the

amount of data transferred (in and out) during the period was significantly larger than

normal cases. It’s possible that the data swapped into or out of NFS server when the local

virtual memory was inadequate for some applications consuming lots of memory such as

Gaussian.

Network statistics of hammerhead from Aug. 4th-11th. hh1-0 was the Internet link and hh1-1 was connected to
local cluster. Sample rate: 10 Minutes.

CPU load (%) Received Data Sent Data
Node Avg. Min Max Total

(GB)
Avg.

(Kbps)
Min

(Kbps)
Max

(Mbps)
Total
(GB)

Avg.
(Kbps)

Min
(Kbps)

Max
(Mbps)

hh1-0 1.52 0.70 25.6 695 9.64 0.75 0.71 9095 126.15 0.01 1.09
hh1-1 1.52 0.70 25.6 42648 591.54 45.84 59.14 35443 491 52.08 58.92
hh2 N/A
hh3 65.6 0.10 100 402758 5586.28 5.57 89.65 89266 1238.13 4.17 31.83
hh4 58.3 0.10 100 149064 2067.54 4.52 90.20 17242 239.15 3.59 9.73
hh5 84.7 0 100 2965 41.13 2.83 5.82 15638 216.90 2.16 9.70
hh6 59.5 0.1 98.3 2583 35.20 3.38 18.13 8954 124.20 2.47 19.49
hh7 84.6 25.0 100 855 11.87 2.87 1.03 2892 40.12 2.12 1.72
hh8 55.5 0 100 960 13.32 1.43 1.03 7852 108.92 0.77 2.02
hh9 75.4 0 100 5535 76.77 1.63 2.86 5906 81.93 1.34 2.38

hh10 59.2 0.1 100 16705 231.71 4.08 4.29 12313 170.79 2.97 11.60
hh11 N/A
hh12 85.0 0 100 20008 277.52 3.94 6.46 16080 223.04 3.21 1.46
hh13 72.0 0 98.0 2103 29.18 1.67 4.25 2714 37.65 1.37 10.98
hh14 80.7 0 100 1493 20.71 1.67 9.09 2334 32.38 1.38 0.88
hh15 77.2 0 100 165542 2296.09 1.68 88.21 27903 387.02 1.42 6.59
hh16 65.4 0 99.7 63009 873.94 1.34 86.31 15474 214.64 0.72 5.31
hh17 63.6 0 100 5789 80.30 3.55 15.15 11412 158.29 2.55 32.40
hh18 66.5 0 100 96324 1336.03 2.83 87.82 11036 153.08 2.10 5.82
hh19 71.8 0 100 177108 2456.50 1.36 92.61 26394 366.10 0.77 5.86
hh20 76.4 0 100 163673 2270.16 1.42 85.54 11203 155.39 0.75 6.21
hh21 81.7 0 100 4760 66.03 2.04 1.12 2647 36.72 1.86 1.37
hh22 61.8 0 99.9 1190 16.51 2.76 0.74 21479 297.92 1.85 1.31
hh23 37.8 0 99.8 158357 2196.42 3.11 87.14 14334 198.82 2.45 6.40

123

hh24 32.3 0 99.9 648506 8994.82 2.87 122.03 609426 8452.78 2.12 42.63
hh25 83.5 0 100 474 6.59 1.63 0.55 513 7.12 1.36 0.21
hh26 80.2 0 100 342 4.75 1.64 0.60 304. 4.23 1.36 0.42
hh27 N/A
hh28 0 0 1.7 238 3.30 1.22 0.70 148 2.06 0.61 0.03

Table B-1 Network Statistics of Hammerhead (Augest 4th – Augest 11th, 2004)

Mainly there were three kinds of traffic in the Gigabit Ethernet network: disk I/O

between processes and NFS server (all users’ home directory was mounted by NFS),

management traffic by LFS, RMS, etc. and user access whose data traffic mainly went to

the master node. Table B-2 and B-3 show the network statistics of deeppurple in one

week (August 4th - August 11th) and one day (August 8th). Since there was no user

logging into the deeppurple on Auguest 8th (Sunday), the data traffic was due to parallel

computing and communication of cluster controlling. Figure B1-B12 show the plotting of

statistics of all nodes in deeppurle. We can see all compute nodes were extremely busy

(100% CPU load) in the whole week. This would lead to a very low throughput from our

earlier analysis.

The burst of curve in the figures might be the result of the launch of some processes that

copied a big amount of data from disk (NFS) into local memory, or the termination of

some processes that copied results from memory into disk (NFS). For example, dp4

might probably started a parallel job as a master node around 4:00 AM on August 8th

(outgoing data were greater than incoming data since then), and dp2 and dp3 might

probably started a job as slave nodes (outgoing data were less than incoming data since

then). Because the data passing (in/out) in dp2 is roughly the double of dp3’s, we may

assume the running processes in dp2 were double of dp3’s. The average data flow in the

day was less than 10Kbps for all compute nodes, showing that the jobs didn’t need a lot

of data exchanging, nor did work closely with NFS file system.

Network statistics of deeppurple from Aug. 4th – 11th. dp1-0 was the Internet link and dp1-1 was connected
to local cluster. Sample rate: 5 Minutes.

CPU load (%) Received Data Sent Data
Node Avg. Min Max Total

(GB)
Avg.

(Kbps)
Min

(Kbps)
Max

(Mbps)
Total
(GB)

Avg.
(Kbps)

Min
(Kbps)

Max
(Mbps)

dp1-0 1.4 0.8 20.7 474 6.58 1.40 0.09 384 4.83 0 1.51
dp1-1 1.4 0.8 20.7 3182 44.15 23.37 2.46 3008 41.73 23.40 2.50
dp2 99.8 46.8 100 418 5.80 3.54 1.52 443 6.15 2.62 0.68
dp3 99.8 0 100 360 5.00 2.18 1.52 2804 38.90 1.79 39.78

124

dp4 99.7 0 100 3246 45.03 2.09 2.48 142924 1982.38 1.70 119.17
dp5 99.8 0 100 830 11.52 3.52 1.51 10902 151.22 2.62 3.70
dp6 99.9 0 100 516 7.16 5.94 0.73 739 10.25 5.36 4.03
dp7 99.9 64.8 100 304 4.22 2.12 1.25 2135 29.62 1.76 6.89
dp8 99.9 65.6 100 755 10.48 3.57 1.52 8536 118.39 2.64 10.75
dp9 99.9 0 100 291 4.04 2.10 0.77 3101 43.01 1.69 4.43

dp10 99.9 63.0 100 593 8.23 2.11 1.52 7975 110.62 1.75 5.20
dp11 100 83.2 100 402 5.58 2.80 1.51 2775 38.49 2.13 6.24
dp12 99.9 63.3 100 594 8.25 2.10 1.50 9904 137.38 1.69 2.59

Table B-2 Network Statistics of Deeppurple (Augest 4th – Augest 11th, 2004)

Network statistics of deeppurple on Aug. 8th. Dp1-0 was the Internet link and dp1-1 was connected to local
cluster. Sample rate: 5 Minutes.

CPU load (%) Received Data Sent Data
Node Avg. Min Max Total

(GB)
Avg.

(Kbps)
Min

(Kbps)
Max

(Kbps)
Total
(GB)

Avg.
(Kbps)

Min
(Kbps)

Max
(Kbps)

dp1-0 1.45 1.40 6.20 61 6.03 5.31 14.07 20 2.03 1.41 43.36
dp1-1 1.45 1.40 6.20 377 36.79 24.64 1940.79 320 31.21 24.89 145.56
dp2 100 100 100 41 4.02 3.91 5.69 31 3.03 2.92 5.02
dp3 100 100 100 23 2.28 2.18 3.94 20 1.94 1.84 3.93
dp4 99.6 0 100 24 2.42 2.18 14.01 34 3.37 1.83 7.99
dp5 100 99.1 100 42 4.09 3.91 13.49 31 3.09 2.90 11.25
dp6 100 100 100 64 6.28 5.95 8.22 62 6.11 5.38 10.29
dp7 100 100 100 23 2.30 2.12 8.36 20 1.95 1.77 3.95
dp8 100 100 100 41 4.03 3.79 5.92 31 3.04 2.84 5.26
dp9 100 100 100 23 2.32 2.19 3.95 27 2.65 1.84 5.43
dp10 100 99.7 100 23 2.31 2.18 10.75 20 1.97 1.82 8.47
dp11 100 100 100 32 3.16 2.82 4.80 25 2.51 2.14 4.47
dp12 100 100 100 23 2.30 2.18 8.49 20 1.97 1.76 4.14

Table B-3 Network Statistics of Deeppurple (Augest 8th, 2004)

125

10^2

10^3

10^4

10^5

Aug.05 Aug.06 Aug.07 Aug.08 Aug.09 Aug.10 Aug.11
 0

 10

 20

Da
ta
 s
en
t/
re
cv
 i
n
KB

CP
U

lo
ad

 %

Time

Gigabit Ethernet Card (eth0) Statistics of dp1
Sample: 5 Minutes

eth0-Recv-KB eth0-Sent-KB CPU-load

10^2

10^3

10^4

10^5

02:0004:0006:0008:0010:0012:0014:0016:0018:0020:0022:00
 0

 10

Da
ta
 s
en
t/
re
cv
 i
n
KB

CP
U
lo
ad
 %

Time (Augest 8)

Gigabit Ethernet Card (eth0) Statistics of dp1
Sample: 5 Minutes

eth0-Recv-KB eth0-Sent-KB CPU-load
Figure B-1 Network Statistics of dp1

10^1

10^2

10^3

10^4

10^5

Aug.05 Aug.06 Aug.07 Aug.08 Aug.09 Aug.10 Aug.11
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Da
ta
 s
en
t/
re
cv
 i
n
KB

CP
U

lo
ad

 %

Time

Gigabit Ethernet Card (eth0) Statistics of dp2
Sample: 5 Minutes

eth0-Recv-KB eth0-Sent-KB CPU-load

 100

 120

 140

 160

 180

 200

 220

02:0004:0006:0008:0010:0012:0014:0016:0018:0020:0022:00
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
Da
ta
 s
en
t/
re
cv
 i
n
KB

CP
U
lo
ad
 %

Time (Augest 8)

Gigabit Ethernet Card (eth0) Statistics of dp2
Sample: 5 Minutes

eth0-Recv-KB eth0-Sent-KB CPU-load
Figure B-2 Network Statistics of dp2

10^1

10^2

10^3

10^4

10^5

10^6

10^7

Aug.05 Aug.06 Aug.07 Aug.08 Aug.09 Aug.10 Aug.11
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Da
ta
 s
en
t/
re
cv
 i
n
KB

CP
U
lo
ad
 %

Time

Gigabit Ethernet Card (eth0) Statistics of dp3
Sample: 5 Minutes

eth0-Recv-KB eth0-Sent-KB CPU-load

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

02:0004:0006:0008:0010:0012:0014:0016:0018:0020:0022:00
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Da
ta
 s
en
t/
re
cv
 i
n
KB

CP
U
lo
ad
 %

Time (Augest 8)

Gigabit Ethernet Card (eth0) Statistics of dp3
Sample: 5 Minutes

eth0-Recv-KB eth0-Sent-KB CPU-load
Figure B-3 Network Statistics of dp3

126

10^1

10^2

10^3

10^4

10^5

10^6

10^7

Aug.05 Aug.06 Aug.07 Aug.08 Aug.09 Aug.10 Aug.11
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
Da
ta
 s
en
t/
re
cv
 i
n
KB

CP
U
lo
ad
 %

Time

Gigabit Ethernet Card (eth0) Statistics of dp4
Sample: 5 Minutes

eth0-Recv-KB eth0-Sent-KB CPU-load

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

02:0004:0006:0008:0010:0012:0014:0016:0018:0020:0022:00
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Da
ta
 s
en
t/
re
cv
 i
n
KB

CP
U
lo
ad
 %

Time (Augest 8)

Gigabit Ethernet Card (eth0) Statistics of dp4
Sample: 5 Minutes

eth0-Recv-KB eth0-Sent-KB CPU-load
Figure B-4 Network Statistics of dp4

10^1

10^2

10^3

10^4

10^5

10^6

Aug.05 Aug.06 Aug.07 Aug.08 Aug.09 Aug.10 Aug.11
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Da
ta
 s
en
t/
re
cv
 i
n
KB

CP
U
lo
ad
 %

Time

Gigabit Ethernet Card (eth0) Statistics of dp5
Sample: 5 Minutes

eth0-Recv-KB eth0-Sent-KB CPU-load

 100

 150

 200

 250

 300

 350

 400

 450

 500

02:0004:0006:0008:0010:0012:0014:0016:0018:0020:0022:00
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
Da
ta
 s
en
t/
re
cv
 i
n
KB

CP
U
lo
ad
 %

Time (Augest 8)

Gigabit Ethernet Card (eth0) Statistics of dp5
Sample: 5 Minutes

eth0-Recv-KB eth0-Sent-KB CPU-load
Figure B-5 Network Statistics of dp5

10^2

10^3

10^4

10^5

10^6

Aug.05 Aug.06 Aug.07 Aug.08 Aug.09 Aug.10 Aug.11
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Da
ta
 s
en
t/
re
cv
 i
n
KB

CP
U
lo
ad
 %

Time

Gigabit Ethernet Card (eth0) Statistics of dp6
Sample: 5 Minutes

eth0-Recv-KB eth0-Sent-KB CPU-load

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

 380

02:0004:0006:0008:0010:0012:0014:0016:0018:0020:0022:00
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Da
ta
 s
en
t/
re
cv
 i
n
KB

CP
U
lo
ad
 %

Time (Augest 8)

Gigabit Ethernet Card (eth0) Statistics of dp6
Sample: 5 Minutes

eth0-Recv-KB eth0-Sent-KB CPU-load
Figure B-6 Network Statistics of dp6

127

10^1

10^2

10^3

10^4

10^5

10^6

Aug.05 Aug.06 Aug.07 Aug.08 Aug.09 Aug.10 Aug.11
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
Da
ta
 s
en
t/
re
cv
 i
n
KB

CP
U
lo
ad
 %

Time

Gigabit Ethernet Card (eth0) Statistics of dp7
Sample: 5 Minutes

eth0-Recv-KB eth0-Sent-KB CPU-load

 50

 100

 150

 200

 250

 300

 350

02:0004:0006:0008:0010:0012:0014:0016:0018:0020:0022:00
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Da
ta
 s
en
t/
re
cv
 i
n
KB

CP
U
lo
ad
 %

Time (Augest 8)

Gigabit Ethernet Card (eth0) Statistics of dp7
Sample: 5 Minutes

eth0-Recv-KB eth0-Sent-KB CPU-load
Figure B-7 Network Statistics of dp7

10^1

10^2

10^3

10^4

10^5

10^6

Aug.05 Aug.06 Aug.07 Aug.08 Aug.09 Aug.10 Aug.11
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Da
ta
 s
en
t/
re
cv
 i
n
KB

CP
U
lo
ad
 %

Time

Gigabit Ethernet Card (eth0) Statistics of dp8
Sample: 5 Minutes

eth0-Recv-KB eth0-Sent-KB CPU-load

 100

 120

 140

 160

 180

 200

 220

02:0004:0006:0008:0010:0012:0014:0016:0018:0020:0022:00
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
Da
ta
 s
en
t/
re
cv
 i
n
KB

CP
U
lo
ad
 %

Time (Augest 8)

Gigabit Ethernet Card (eth0) Statistics of dp8
Sample: 5 Minutes

eth0-Recv-KB eth0-Sent-KB CPU-load
Figure B-8 Network Statistics of dp8

10^1

10^2

10^3

10^4

10^5

10^6

Aug.05 Aug.06 Aug.07 Aug.08 Aug.09 Aug.10 Aug.11
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Da
ta
 s
en
t/
re
cv
 i
n
KB

CP
U
lo
ad
 %

Time

Gigabit Ethernet Card (eth0) Statistics of dp9
Sample: 5 Minutes

eth0-Recv-KB eth0-Sent-KB CPU-load

 60

 80

 100

 120

 140

 160

 180

 200

02:0004:0006:0008:0010:0012:0014:0016:0018:0020:0022:00
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Da
ta
 s
en
t/
re
cv
 i
n
KB

CP
U
lo
ad
 %

Time (Augest 8)

Gigabit Ethernet Card (eth0) Statistics of dp9
Sample: 5 Minutes

eth0-Recv-KB eth0-Sent-KB CPU-load
Figure B-9 Network Statistics of dp9

128

10^1

10^2

10^3

10^4

10^5

10^6

Aug.05 Aug.06 Aug.07 Aug.08 Aug.09 Aug.10 Aug.11
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
Da
ta
 s
en
t/
re
cv
 i
n
KB

CP
U
lo
ad
 %

Time

Gigabit Ethernet Card (eth0) Statistics of dp10
Sample: 5 Minutes

eth0-Recv-KB eth0-Sent-KB CPU-load

 50

 100

 150

 200

 250

 300

 350

 400

02:0004:0006:0008:0010:0012:0014:0016:0018:0020:0022:00
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Da
ta
 s
en
t/
re
cv
 i
n
KB

CP
U
lo
ad
 %

Time (Augest 8)

Gigabit Ethernet Card (eth0) Statistics of dp10
Sample: 5 Minutes

eth0-Recv-KB eth0-Sent-KB CPU-load
Figure B-10 Network Statistics of dp10

10^1

10^2

10^3

10^4

10^5

10^6

Aug.05 Aug.06 Aug.07 Aug.08 Aug.09 Aug.10 Aug.11
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Da
ta
 s
en
t/
re
cv
 i
n
KB

CP
U
lo
ad
 %

Time

Gigabit Ethernet Card (eth0) Statistics of dp11
Sample: 5 Minutes

eth0-Recv-KB eth0-Sent-KB CPU-load

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

 180

02:0004:0006:0008:0010:0012:0014:0016:0018:0020:0022:00
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
Da
ta
 s
en
t/
re
cv
 i
n
KB

CP
U
lo
ad
 %

Time (Augest 8)

Gigabit Ethernet Card (eth0) Statistics of dp11
Sample: 5 Minutes

eth0-Recv-KB eth0-Sent-KB CPU-load
Figure B-11 Network Statistics of dp11

10^1

10^2

10^3

10^4

10^5

Aug.05 Aug.06 Aug.07 Aug.08 Aug.09 Aug.10 Aug.11
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Da
ta
 s
en
t/
re
cv
 i
n
KB

CP
U
lo
ad
 %

Time

Gigabit Ethernet Card (eth0) Statistics of dp12
Sample: 5 Minutes

eth0-Recv-KB eth0-Sent-KB CPU-load

 50

 100

 150

 200

 250

 300

 350

02:0004:0006:0008:0010:0012:0014:0016:0018:0020:0022:00
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Da
ta
 s
en
t/
re
cv
 i
n
KB

CP
U
lo
ad
 %

Time (Augest 8)

Gigabit Ethernet Card (eth0) Statistics of dp12
Sample: 5 Minutes

eth0-Recv-KB eth0-Sent-KB CPU-load
Figure B-12 Network Statistics of dp12

129

	1.1 Thesis Statement
	1.2 Thesis Organization
	2.1 HPC History and Its Evolution to Cluster Computing
	2.2 HPC Networking
	2.2.1 High Performance Network Technologies
	2.2.2 Networking of HPC Clusters

	2.3 Message Passing Interface (MPI)
	2.3.1 MPI Introduction
	2.3.2 MPICH

	2.4 Job Management System
	2.4.1 Goals of JMS
	2.4.2 LSF (Load Sharing Facility)

	2.5 File Systems in HPC Clusters
	2.5.1 Storage Networking
	2.5.2 Cluster File Systems
	2.5.3 Network Storage in SHARCNET

	2.6 Test-bed Specifications
	3.1 A Survey of Network Measurement Tools
	3.2 Network Performance Metrics
	3.3 Communication Model
	3.4 Timers and Timing
	3.5 Iteration Estimation and Communication Synchronization
	3.6 System Resource Tracing
	3.7 UDP Communication Measurement Considerations
	3.8 Summary
	4.1 A Closer Look at Gigabit Ethernet
	4.1.1 Protocol Properties
	4.1.2 Interrupts Coalescence and Jumbo Frame Size
	4.1.3 Data Buffers and Zero-Copy Technique

	4.2 Network Communication and Kernel Interactions
	4.2.1 Communication on an Alpha SMP Architecture
	4.2.1.1 UDP Communication
	4.2.1.2 TCP Communication
	4.2.1.3 MPI Communication
	4.2.1.4 Performance Factors of Network Communication

	4.2.2 Communication on an Intel Xeon SMP Architecture
	4.2.2.1 UDP Communication
	4.2.2.2 TCP Communication
	4.2.2.3 MPI Communication
	4.2.2.4 Performance Factors of Network Communication

	4.2.3 Summary and Comparison

	4.3 Blocking and Non-blocking Communication
	4.4 UDP and TCP Throughput
	4.4.1 UDP Communication
	4.4.2 TCP Communication

	4.5 Network Communication Latency
	4.6 Summary
	5.1 MPI Communication Performance
	5.1.1 Myrinet
	5.1.2 Quadrics’ QsNet

	5.2 A Comparison to Gigabit Ethernet MPI Communication
	5.3 Summary
	6.1 Thesis Summary
	6.2 Contributions and Results
	6.3 Future Work
	A.1 Overview
	A.2 Features
	A.2.1 UDP Communication Test:
	A.2.2 TCP Communication Test:
	A.2.3 MPI communication Test:

	A.3 Hpcbench Usage and Options
	A.3.1 UDP Communication Measurement
	A.3.2 TCP Communication Measurement
	A.3.3 MPI Communication Measurement
	A.3.4 SYSMON – Linux System Resource Monitor

